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ABSTRACT 
Malaria remains a serious public health problem in Zimbabwe. Reliable forecasting of malaria 

is crucial for effective resource allocation, early warning systems, and implementing targeted 

intervention strategies. This research study aimed to explore the application of time-series 

models in forecasting malaria cases in Harare Province, Zimbabwe. The objectives were to 

establish the trend of malaria cases, predict the future trend using SARIMAX and deep learning 

LSTM models, and to determine the best-performing model in terms of mean absolute percentage 

error (MAPE). Historical weekly data on suspected and positive malaria cases from 2013 to 

2023 were analyzed to develop reliable forecasting models. Two-time series models were 

developed, evaluated, and compared based on their predictive performance to identify the most 

appropriate model for accurate malaria case forecasting. The results showed an overall 

decreasing trend in malaria cases in Harare province. For suspected malaria case prediction, 

the SARIMAX (3,1,3)(0,0,0,13) model achieved a MAPE of 20%, while the LSTM model 

demonstrated exceptional performance with a MAPE of  0.099%. However, for positive malaria 

case forecasting, both the SARIMAX (6,0,6)(0,0,6,13) and LSTM models struggled, with the 

LSTM model having a MAPE of over 259 million percent.  The findings suggest the LSTM model 

is superior for predicting suspected malaria cases, but faces challenges in accurately forecasting 

positive cases. The SARIMAX model provided reasonably accurate forecasts for both suspected 

and positive malaria cases. Further research is needed to improve positive case prediction 

capabilities, potentially by exploring alternative model architectures. 
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CHAPTER 1:  

1.1 Introduction  

 

Over one-third of the world's population is at risk of contracting malaria, which continues to be 

one of the leading causes of death for humans globally. The effect of this disease has sparked 

widespread debate and concern globally. In particular, malaria poses a significant threat in urban, 

peri-urban, and rural areas of developing countries, such as Zimbabwe (Tatem, 2013). 

Addressing and understanding the patterns and dynamics of malaria cases is crucial for effective 

disease management and prevention. Forecasting diseases, including malaria, is a valuable tool 

utilized by scientists in the field of public health. By employing techniques like time series 

analysis and deep learning models, researchers can understand the weekly patterns of malaria 

cases. This enables a deeper understanding of the disease's dynamics, facilitating more targeted 

interventions and resource allocation. In light of the importance of disease forecasting, this 

chapter aims to present a study focused on forecasting the weekly pattern of malaria cases. The 

study employs time series analysis and deep learning models to analyze historical data and 

predict future trends. By doing so, it aims to contribute to the body of knowledge surrounding 

malaria prevention and control strategies. 

The chapter is structured as follows: first, the background of the study will provide an overview 

of the current understanding of malaria and the significance of forecasting its patterns. Next, the 

problem statement will outline the specific challenges and gaps in existing research. The aim of 

the study will be clearly defined, followed by research questions that guides the investigation. 

The significance of the study will be highlighted to emphasize the potential practical 

implications and benefits of the research findings. Additionally, the chapter will address the 

hypothesis and limitations of the study, and conclude by summarizing the key points and laying 

out the roadmap for the subsequent sections. 

 

1.2 Background 

Malaria, a curable yet life-threatening disease, has a long history dating back to ancient times. 

Early references to malaria can be found in Egyptian papyrus writings, and the renowned Greek 

physician Hippocrates provided detailed descriptions of the disease. Malaria has had a significant 

impact throughout history, even devastating invaders of the Roman Empire. The name "malaria" 
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itself originate from the Italian phrase "mal aria," meaning bad air, reflecting the belief that the 

disease was caused by noxious air in marshy areas. 

Malaria is caused by plasmodium parasites and mainly spread to humans via the mosquito bites 

of female mosquitoes. For people who lack immunity, symptoms usually manifest in less than 

ten days. If untreated, it can progress to severe illness and have life-threatening consequences. 

The World Health Organization estimated that in 2019,  recorded two hundred and twenty nine 

million malaria cases and forty hundred and nine thousand deaths ((WHO), 2020)). 

In Zimbabwe, as in many other parts of Southern Africa, malaria is a major public health issue. 

The country is at high risk because of the presence of Plasmodium parasites and the Anopheles 

mosquito vector. While malaria is preventable and treatable, the disease continues to pose a 

substantial burden on the population. It is responsible for a significant number of deaths, 

especially among children under five years old. In 2015, malaria transmission was ongoing in 

Zimbabwe, highlighting the persistent threat the disease poses (WHO 2015). 

The transmission of malaria is influenced by several factors, including present of parasite, the 

mosquito vector, and the environment. The female mosquitoes lay their eggs swampy area, and 

as they develop, they go through larval stages before emerging as adult mosquitoes. When a 

person is bitten by an infected mosquito, the parasites enter the blood circulation system and 

infect the blood cells and destroy. The leading characteristic symptoms of malaria include fever, 

headache fatigue, nausea and diarrhoea. If left untreated, malaria can result in severe 

complications and death. Globally, malaria remains a major concern, with increasing impact and 

devastating effects on human populations, particularly in developing countries like Zimbabwe.  

1.3 Problem Statement 

The escalating malaria cases transmission in Zimbabwe presents a significant public health 

challenge that affects both rural and urban areas, as well as peri-urban communities. Despite 

concerted efforts to combat the disease, the country continues to struggle with the burden of 

malaria cases and associated morbidity and mortality. The World Health Organization (WHO) 

African Region, including Zimbabwe, bears heaviest burden, accounting for over 95% of global 

malaria cases in 2021. The rising number of malaria cases poses severe implications for the 

health system, exacerbating resource constraints and straining healthcare services. The impact 

extends beyond the individual level, impeding socio-economic development and hindering 

progress toward achieving national and international health targets. 
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1.4 Aim of the study 

The study aims to forecast the dynamics of Malaria cases in Harare Province using time series 

models. 

1.5 Research objectives 

The goal of the research is: 

 To establish trend the of Malaria cases in Harare Province. 

 To predict the future trend of Malaria cases using time series models. 

 To determine the best-performing model between SARIMAX and Deep Learning 

models in terms of mean absolute percentage error. 

1.6 Research questions 

The study seeks to answer the following questions: 

1. Is the trend in the Malaria cases increasing or decreasing? 

2. How accurately can time series models forecast malaria cases?  

3. Which models between SARIMAX and Deep Learning perform best in forecasting 

malaria cases? 

1.7 Significance of the study 

This study holds significant importance for various stakeholders, including the Government of 

Zimbabwe, Bindura University of Science Education, and the researcher involved. The 

significance of the study is outlined as follows: 

Government of Zimbabwe: 

The research findings from this study can be used as a valuable tool by the Government of 

Zimbabwe in forecasting the dynamic nature of malaria. By understanding the patterns and 

trends of malaria cases, the government can make informed decisions on resource allocation, 

develop effective prevention and control strategies, and improve management in hospitals and 

healthcare facilities. The study's insights can contribute to maximizing the utilization of available 

resources and improve decision-making steps related to the malaria control and prevention in 

Harare. 

Bindura University of Science Education: 

For university, the study adds to existing knowledge and becomes a valuable addition to the 

library materials. It serves as a reference for future researchers who wish to explore similar areas 

of study. The findings and methodologies employed in this research can provide a foundation for 
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further studies and contribute to the academic and scientific discourse surrounding malaria 

forecasting and control. The study's outcomes can potentially inspire and guide future research 

endeavour within the university and beyond. 

Researcher: 

Participating in this study provides the researcher with valuable opportunities for personal and 

professional growth. By working on forecasting malaria cases using programming languages and 

employing time series and deep learning models, the researcher's understanding of these 

techniques will be broadened. The researcher will gain practical experience in data analysis, 

modelling, and forecasting, enhancing their skills in these areas. The knowledge and expertise 

acquired through this study will serve as a valuable asset for future research endeavours, 

enabling the researcher to contribute further to the field of malaria prevention and control. 

Literature: 

The outcome of research will add to the of knowledge   application and effectiveness of time 

series models in malaria forecasting 

1.8 Scope of the study 

The research focuses on using statistical and mathematical modelling in machine learning to 

forecast Malaria cases. The research used historical from City of Harare Health Information 

department (DHIS) Zimbabwe City Health Department and Harare Meteorological data sector of 

rainfall and temperature data, as these are conditions which influence malaria cases. The data is 

imported into the Python package and analyzed. 

1.9 Assumptions 

 The data utilized in this study comes from reputable sources and has not been tampered 

with. 

 There are no missing data variables, and the weeks are defined as a time variable 

1.10 Limitations 

 The study focused on Harare Province exclusively. 

 The study analyzed historical data from January 1, 2013 to December 31, 2023.The 

research did not account for each district's weekly temperature and rainfall 

 The study used average weekly average temperature and weekly rainfall 

1.11 Definition of terms 

 

DHIS - District health information 
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WHO - World Health Organisation  

Time series - is a collection of data points gathered consistently over a period, usually at equally 

spaced intervals of time. It represents the evolution of a variable or phenomenon over time, 

allowing for the analysis of patterns, trends, and dependencies in the data  (Brockwell, 2016). 

 

1.12 Conclusion 

Chapter 1 sets the stage for the research study, establishing its relevance, significance, and scope. 

It provides a solid foundation for subsequent chapters, laying the groundwork for the detailed 

analysis, methodology, and findings that follow 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

 

This section focuses on number of key findings that are related to the study's available literature 

on the applicability of time series models in forecasting malaria cases, which will serve as a 

review of the concepts from earlier studies and associated works of literature to briefly. A 

research case framework is presented and covers the main focus of the dissertation. Many 

different models have been used to try and forecast malaria cases. 

2.2 Theoretical literature review 

 

Despite the Government of Zimbabwe's efforts to eliminate malaria and establish Harare as a 

non-malaria transmission zone, malaria transmission continues to persist in the country. Time 

series analysis has significantly impacted the health sector, particularly when forecasting various 

diseases such as typhoid (Nwakuwa Esther Promise, 2022), tuberculosis (Hellyon, 2022), and the 

recent coronavirus pandemic (Amasiri et al., 2022). Accurate forecasting of disease cases is 

crucial for effective public health planning and intervention strategies. The purpose of this study 

is to implement time series analysis to forecast malaria cases in Harare Province, where malaria 

is endemic. The study employes two models: SARIMAX and LSTM model, a traditional time-

series model and a neural network-based model, respectively. SARIMAX models have been 

mostly used in time series forecasting, including prediction of infectious disease prevalence, as 

they can capture temporal dependencies and incorporate external factors such as climate 

variables. LSTM models, on the other hand, have gained influence in time series forecasting and 

disease prediction. By leveraging patterns and trends from historical malaria data, LSTM models 

can provide accurate predictions, particularly when the time series exhibits nonlinearity and 

long-term dependencies. Incorporating epidemiological information into the modelling process 

can enhance the accuracy and robustness of malaria case forecasts. Factors such as mosquito 

vectors, human behaviour, and environmental conditions are considered in the theory of malaria 

transmission and play significant roles in the dynamics and spread of the disease. 

 Theoretical Framework 
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2.3 Time series analysis 

(Trirat, 2024)  time series is an ordered collection of data points; the data are usually equally 

spaced. The data could be recorded in hourly, minute, and weekly intervals. Analysis of these 

data sets by data mining, pattern recognition, and predictive analysis is called time series analysis 

( (Mills, 2019)). It seeks to understand the underlying context of the relevant data points through 

the derivation of future values from past recorded values  

2.3.1 Components of time series 

Three key components of timeseries are: trend, seasonality, and irregularity 

2.3.2 Trend component 

A trend is gradual changes throughout time. The trend may be moving up or down, when it 

moves up, we have a positive trend and when it moves down, we have a negative trend 

2.3.3 Seasonality component 

(Zuo, 2022))The seasonal captures the seasonality variation, a repetition that keeps happening for 

a repeatedly set of time 

2.3.4 Irregular component 

Commonly referred to as the residual component. This is what is left after estimating the trend 

and seasonal component from the series. The residual component is the part that cannot be 

explained by the trend or seasonality component. It represents the part of the data that cannot be 

modelled. 

2.4 Seasonal Autoregressive Integrated Moving Average with exogenous variables 

(Papaioannou GP, 2016) stated that the autoregressive moving average (ARMA) model 

transformed into the autoregressive integrated moving average model. The ARMA is a fusion of 

the moving average MA(q) and the autoregressive AR(p). The order in which the auto regressive 

and moving average models are applied is determined by the ARMA model. These models are 

most suitable when the data exhibits normality properties. When the Auto-Correlation Function 

(ACF) steadily declines and the series does not exhibit a consistent pattern, the ARMA model is 

employed for modelling. However, if the time series data contains anomalies, the data is often 

transformed before being modelled by ARMA, which is then referred to auto regressive 

integrated moving average. 

The autoregressive AR (p), also known as the average regression model, assumes that present 

time series information can be adequately described throw its historical information.When there 

is a minor correlation between the present and past information, the current data changes to a 

white noise time series. The degree of reliance on the past determines strength of the 
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relationship, with a stronger dependency resulting in a random walk. To understand the 

properties of the target time series information, the AR(p) model examines its autocorrelation 

with the past information. 

This means information from previous time   influences current results. In the autocorrelation 

function and partial auto-correlation function graphs show the autocorrelation function 

declines quickly, while the partial auto correlation function exhibit a cutoff limit. The auto 

correlation function calculates the correlation between data points that are separated by a 

certain number of periods, indicating order of correlation based on time differences. The PACF, 

on the other hand, represents the correlation coefficient between two variables after controlling 

for any other intermediate values. A typical regression model for AR(p) shows 

  

 

                               

In this equation: 

When forecasting malaria cases       shows the number of malaria cases at a certain period, t. 

which can be daily weekly or monthly cases,                     are the lagged values of the 

malaria cases where p is the order of the AR model. lagged values capture impact of previous 

malaria cases,            are the auto regressive coefficients that determine the influence of 

the lagged values on the current malaria cases they quantify how much the previous malaria 

cases contribute to the current cases,     represents is error or residual terms at time t which 

capture for factors other than the lagged values. In context of malaria forecasting this could be 

factors such as change in climate patterns  

The ARMA form simplifies model interpretation by centering lagged values around the mean 

(μ). It helps to observe how each lagged value affects the current value relative to the time series 

mean. The present value on the time series is a weighted average of past residuals, while the 

moving average reflects a moving average process. Given that the residual term is white noise, 

the current value is calculated as the mean of the previous white noise. The moving 

average model, which is based on the summing of these terms, presents an average regression 

feature because of the high normality and average regression properties of white noise. Unlike 

the autoregressive model AR(p), the moving average model MA(q) uses a weighted linear 

combination with white noise      The general form of the MA(q) model is given as: 
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Where: 

     is the time series being modelled  

  is mean or intercept of the time series. 

    indicates the error term or residual at time t, which accounts for unexplained fluctuation in the 

time series. 

              are the lagged prediction errors 

         represents moving average coefficients that determine the impact of previous 

prediction errors on the current time series  

Estimating time series data solely with auto regressive and moving average models challenging. 

To address this, the autoregressive moving average model joins the strengths of two models. It 

assumes that previous time series data and error term determine the present data, exhibiting an 

average regression characteristic. The ARMA model is suitable for time series analysis because 

of its normality and efficiency in approximation with fewer parameters. 

The equation for ARMA 

 

                                                                            

In this equation: 

Yₜ is the time series being modelled. 

                   represents the lagged values in the time series, p representing the order of the 

autoregressive model. 

c represents the intercept. 

              represents the autoregressive coefficients that determine impact of previous 

values on the present value of the time series. 

                      represent prediction errors or residuals at time t and the lagged prediction 

errors, where q is order of moving average model. 

              represent moving average coefficients that determine impact of previous prediction 

errors on the present value of time series 
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For non-normal or unstable time series data with rising trends or variance, normalization 

techniques such as log transformation, differencing, and seasonal differencing are required 

before applying the ARIMA model for analysis. 

Several strategies can be used to analyze these seasonal time series models. These include 

regression models with indicator and trigonometric functions, as well as Winters' seasonal 

exponential smoothing. However, these approaches presume that the seasonal time series data 

are independent, which may not be the case as time series data frequently display correlation. In 

such cases the most appropriate is to use the ARIMA model. Even though the original data 

lacked normality or average regression qualities, the differenced data could have these 

properties. The ARIMA model utilizes different time series and is essentially an ARMA model. 

The auto regressive moving average and auto integrated moving average models with a 

difference of 0 are equal. 

ARIMA model is consist of three orders: p, d, and q. ARIMA(p,d,q), p ), p are autoregressive 

terms number , d is the non-seasonal differences to make the series stationarity, and q represent 

the number of lagged forecasted errors in the prediction equation.  

The equation for an ARIMA (p, d, q)  

                                                              

When forecasting malaria cases,     represents the the number of malaria cases over time. 

                   are the time series lagged values. These represent the past values of malaria 

cases, up to a certain lag order p, by utilizing these lag values as predictors, we are able to 

 capture relationship between past and current malaria cases.   represent the intercept or constant. 

It represents an average level of malaria cases when other variables are equal zero.              

are the autoregressive values. These coefficients determine impact of previous lagged value on 

the present value of malaria cases. They represent the direction and strength of the connection 

between past cases with present cases.                       are the prediction errors or residuals 

at time t and the lagged prediction error. They represent the difference between actual and 

predicted values of malaria cases. By including these residuals as predictors, they can capture 

any remaining patterns or information in the data.               are moving average coefficients. 

The coefficients determine the effect of past prediction errors on the present value of malaria 

cases. They represent the influence of past error in adjusting the forecasted values. 
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When time series data exhibit seasonality trends, the seasonal autoregressive integrated moving 

average (SARIMA) model is commonly used (Dabral, 2017). SARIMA combines the seasonal, 

autoregressive (AR), integrated (I), and moving average (MA) components. It assumes that data 

contain trends, seasonal components, and irregular terms. Developing SARIMA models typically 

involves several steps. 

First, (Hassani, 2017)  OCSB test is used to find the order of the seasonal differencing. Osborn, 

Chui, Smith, and Birchenhall (OCSB) test statistical determine order of seasonal differencing in 

a time series. It identifies appropriate number of seasonal differences required to make the series 

stationary. The OCSB test examines the autocorrelation structure of time series at different 

seasonal lags to determine the appropriate order of seasonal differencing. After seasonal order 

differencing is determined, the KPSS unit-root test is employed to establish order of non-

seasonal differencing. The KPSS test checks whether time series unit root or is stationary. If  

time series found to have unit root, it implies that differencing is required to make it stationary.  

After determining the orders of seasonal and non-seasonal differencing, the model space is 

explored using stepwise processes. This involves fitting different models with various 

combinations of autoregressive (AR), moving average (MA), seasonal autoregressive (SAR), and 

seasonal moving average (SMA) terms. Stepwise process evaluates the performance of each 

model based on goodness-of-fit tests such as Akaike Information Criterion and examination of 

estimated residuals 

The formula for SARIMA (p,d,q)(P, D, Q) where  (P, D, Q)s represents  additional seasonal. The 

specific values of P, D, and Q depend on order seasonality of data. 

The equation for a SARIMA (p, d, q)(P, D, Q)m model is represented as follows: 

                                                 

                                                

 

When forecasting malaria cases      represents the number of malaria cases at time t. It refers to 

the observed values of malaria cases over time.    represents the backshift operator. When B is 

applied to the malaria cases time series, it shifts the values backward by one time period. For 

example,      represents the number of malaria cases at time t-m.    represents the average 

number of malaria cases. It is a constant value that represents the baseline level of malaria cases. 

              are the autoregressive (AR) coefficients. They represent the effect of previous p 
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lagged values of the malaria cases on the present values. The AR(p) captures relationship 

between the current cases and past cases. d represents order of differencing applied to the malaria 

cases time series. Differencing is used to remove trends and seasonality from the data, making it 

stationary               are the moving average (MA) coefficients. They represent effect of 

previous q lagged error terms on the present value. The MA(q) component captures the effect of 

the previous errors on the present number of cases. εₜ represents error term at time t. It captures 

the part of the observed number of cases that is not explained by the model. P represents order of 

seasonal autoregressive (SAR) terms. These terms capture the seasonal patterns in malaria cases. 

The SAR(P) component represents the effect of the previous P lagged seasonal values on the 

present value. D represents order of seasonal differencing applied malaria cases time series. It is 

similar to the non-seasonal differencing (d), but it is applied to a lagged seasonal value. 

               these are the seasonal moving average (SMA) coefficients. They represent the 

effect of the previous Q lagged seasonal error terms on the current value. m represents the 

seasonal period. In the case of malaria forecasting, it represents the length of the seasonal pattern 

in the data, such as the annual or seasonal fluctuations in malaria cases. 

If the order of the seasonal time series model is zero, it is equivalent to the ARIMA model. 

The SARIMAX is an extension model for SARIMA model, it incorporating the influence of 

exogenous factors. Exogenous factors are external factors that can impact the time series being 

analyzed. By including these variables in the modelling process, the SARIMAX model can 

enhance the accuracy and predictive power of future value estimations. These variables include 

economic indicators, weather data, demographic information, or any other relevant factors that 

are believed to impact the time series under investigation (Marco Peixeiro 2022). 

The SARIMAX model is a more comprehensive version of the SARIMA model that includes 

exogenous variables. The equation for a SARIMAX (p, d, q)(P, D, Q)m model can be expressed 

as follows: 

                                                                       

                                                                      

 

In this equation 
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When forecasting malaria cases, the SARIMAX   model adds            ₖ   which represents the 

coefficients associated with the exogenous variables. These coefficients capture the relationship 

between exogenous variables and outcome of malaria cases 

2.5 Deep learning models 

 

Deep learning, is part of machine learning models, which is specifically designed for neural 

network models which is highly effective for time series analysis, particularly when dealing with 

large datasets that possess numerous features and exhibit non-linear relationships. Deep learning 

offers various architectures, such as LSTM, CNN, and auto-regressive deep neural network 

models. Three types of deep learning models that are suitable for times series forecasting are 

single model, multi-step model, and multi-output model, (Peixeiro, 2022). 

2.6 Recurrent neural network 

 

A recurrent neural network (RNN) is a specific type of deep learning structure tailored for 

processing sequential information. RNNs form a family of networks that share a common 

architecture. Within the RNN family, there are different model such as long short-term memory 

and gated recurrent unit (GRU). RNNs incorporate a hidden state that is fed back into the 

network, enabling it to use past information as input when processing the next element in a 

sequence. This mechanism allows the network to mimic the concept of memory. However, 

RNNs are subject to a limitation known as short-term memory, which means that the influence of 

past information decreases as the sequence progresses (Goodfellow, I., Bengio, Y., & Courville, 

A., 2016) This is a key aspect of RNNs that is important to consider when using them for 

modeling sequential data. 

2.7 Long Short-term Memory LSTM 

 

The Long Short-Term Memory (LSTM) architecture is an enhancement of the Recurrent Neural 

Network (RNN) architecture, specifically designed to tackle the diminishing gradient problem. 

This problem arises when the influence of past information on the network fades over time. In 

LSTM, a cell state is incorporated into the RNN to preserve crucial information for extended 

periods. The LSTM architecture is composed of 3 gates:  forget gate, input gate, output gate. 

Forget gate decides what information from the past and current sequence values should be kept 

or discarded. Input gate identifies pertinent information from the current sequence and updates 

the cell state accordingly. Output gate uses the past information stored in the cell state to process 
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the current sequence element. It can either produce a result to the output layer or generate new 

information for the next sequence element. LSTM can be implemented in several ways, as 

single-step model, multi-step model, and multi-output model. In the single-step model, a single 

value representing the prediction is outputted. The multi-step model, the output is a sequence of 

predictions for multiple future time steps. The multi-output model produces predictions for more 

than one target.  (Peixeiro, 2022).  

2.8 Empirical literature review 

 

Numerous studies have been conducted to analyze and compare time series models for 

forecasting future estimates of time series data. Many of these studies aim to determine the best-

performing model among the thousands available. This section reviews a few studies that focus 

on LSTM and SARIMAX models and other related models. 

(Gondwe, 2021)utilized the SARIMA model in the Nsanje district hospital of Malawi to examine 

trends in malaria cases among children aged 5 years and under. The study found that the 

SARIMA model (0, 1, 2)(0, 1, 1)12 was the most suitable for forecasting malaria incidence in the 

Nsanje district. The research concluded that malaria cases were increasing at a unknown rate and 

predicted values from the model closely matched the actual values, demonstrating its adequacy 

for monthly malaria case forecasts. 

(Wang M, 2019) compared the predictive performance of several models, including ARIMA, 

STL + ARIMA, BP ANN, and LSTM network models, in Yunnan province, China. The study 

employed auto ARIMA to build a SARIMA (0, 1, 2)(0, 1, 1)12 model. The BP ANN model was 

established with optimal parameters NNARR (12, 15)12, and the LSTM model had a learning 

rate of 0.001, MSE as the loss function, and 2 hidden layers. The results indicated that the LSTM 

model outperformed the other three models in terms of prediction performance for malaria cases. 

Anwar and Malar (2016) used an ARIMA model to predict future trends in malaria incidence in 

Afghanistan. They developed two A (Gondwe, 2021)RIMA models, ARIMA (4, 1, 1)(1, 0, 1)12 

and ARIMA (1, 1, 1)(1, 0, 1)12. ARIMA (4, 1, 1)(1, 0, 1)12,was identified as the best fit model 

and was used in estimating the number of malaria cases in a given month based on cases 

occurring in the 1st, 2nd, 3rd, 4th, and 12th months prior, after adjusting for negative seasonal 

moving averages. While the model performed well for short-term one-step-ahead predictions, its 

long-term prediction performance was not satisfactory. However, the model ARIMA (1, 1, 1)(1, 

0, 1)12 demonstrated better long-term predictive power, with estimates remaining close to the 



15 
 

actual data although the model did not have a good fit to the actual data. The study suggested 

that ARIMA can be applied to forecast malaria patterns in Afghanistan. 

 (Thomas Schincariol, 2021)conducted a study to evaluate the feasibility of predicting malaria 

cases in the French Guiana-Brazil cross-border area and developing an early warning system. 

The study compared LSTM and ARIMAX model. The LSTM model yielded good prediction 

results, with a slight increase of only 1 per cent in RMSE for Brazilian data and a 12 per cent 

lower MAE. The LSTM model predicted a lower number of cases compared to the ARIMAX 

model, which had higher predicted cases. The study concluded that LSTM model outperformed 

ARIMAX model in terms of predictive errors, temporality prediction of malaria peaks, and 

prediction of low cases. However, the study covered a relatively short period from 2014 to 2019, 

limiting its ability to conclude long-term prediction performance. 

(Sakubu, 2023) employed deep learning models to study dynamics of malaria in Burundi. The 

research developed two types of deep learning model univariate LSTM and multivariate LSTM. 

After running and fitting the data, the models were tested using RMSE. The univariate LSTM 

model achieved a smaller RMSE than the multivariate LSTM model. The estimated malaria 

cases in the country during the study period were 12,959,182.46, with the univariate model 

predicting 12,841,653.9 (approximately one million cases less than the observed cases) and the 

multivariate LSTM model predicting 15,215,766.15 cases (around two and a half million more 

than the actual reported cases). 

(Zinszer, 2014) and his team used ARIMAX to predict future cases of malaria in Bhutan. They 

looked at monthly malaria cases reported by health centers from 1994 to 2008, as well as 

weather data like temperature and rainfall. They made different ARIMA models for each district 

in the province. The best models for each district were different, but the best overall model was 

ARIMA (2, 1, 1)(0, 1, 1)12. This model predicted that there would be between 15 to 82 cases in 

2009 and 67 to 149 cases in 2010. The population in 2009 was 285,375, and they expected it to 

be 289,085 in 2010. The ARIMAX model, which included monthly cases and weather factors, 

showed different results for different districts. A one-month delay in the highest temperature was 

a strong sign of more malaria cases in four districts. The number of malaria cases in previous 

months was also a good predictor in one district, but no factor could predict malaria cases in two 

districts. The ARIMA models were useful in predicting the number of cases in areas where 
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malaria is common in Bhutan. However, the factors that predicted malaria cases were not the 

same when using the ARIMAX model with selected lag times and weather predictors. 

(Mohamed, 2022)The results showed that the ANN model performed better than the other 

models, with the lowest values for RMSE (39.4044), MAE (29.1615), MAPE (31.3611), and 

MASE (0.6618). Furthermore, the researcher explored the inclusion of three meteorological 

variables, such as humidity, in the ANN model. The findings indicated that incorporating these 

climatological variables enhanced the model's predictive ability for malaria incidence data. It is 

important to note that this study focused solely on the Marodijeh region of Somaliland only. 

 Multiple research efforts in disease burden prediction have also shown that ANN models 

outperform classic approaches such as SARIMA. However, It remains difficult to select a single 

method for predicting malaria, as no single approach has proved consistent superiority over 

others. 

 

(Adeola, (2019), predicted malaria cases in Nkomazi, South Africa using environmental 

variables sensed remotely. These variables, including vegetation indices, water index, land 

surface temperature, and rainfall, were evaluated monthly using SARIMA models. Predictions 

were made for 56 months of the remain information and compared with actual malaria cases. All 

environmental variables, except for land surface temperature, were significant in predicting 

malaria transmission. Rainfall showed the highest correlation with malaria cases. The SARIMA 

model without environmental variables could explain 41% of the variation in malaria cases. 

However, when these environmental variables were included, the model explained about 65% of 

the variation. The study concluded that the predicted number of malaria cases closely matched 

the observed cases, suggesting the model's effectiveness in predicting malaria cases in the study 

area. 

 (Nwakuwa Esther Promise, 2022) developed a Hybrid SARIMA-LSTM Model was used to 

predict malaria cases in Nigeria. The study used two time series statistical methods, SARIMA 

and LSTM, to analyze and forecast malaria prevalence. Data from the World Bank, covering 

2003 to 2019, was used. The study found that malaria cases in Nigeria are low during the dry 

season and increase during the rainy season. The SARIMA-LSTM model was more accurate in 

forecasting than the standalone SARIMA and LSTM models. The SARIMA-LSTM model 

outperformed the SARIMA model because it could capture both linear and nonlinear 
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characteristics in the data. The study concluded that the Hybrid SARIMA-LSTM Model was 

effective in predicting malaria prevalence in Nigeria. 

2.9 Knowledge Gap 

 

These studies provide valuable empirical results on the analysis of predictive models for malaria 

cases. However, there is gap in literature regarding predictive models for malaria cases in Harare 

province. This gap calls for further research to study both SARIMAX and LSTM models in 

forecasting malaria cases in Harare. By employing multiple predictive models, the accuracy of 

predictions can potentially be enhanced. It is assumed that increasing the number of forecasting 

methods used will improve the accuracy of the study's predictions 

2.10 Conceptual Framework 

 

(Brown, 2016) described conceptual model as a high-level representation or framework that 

describes the key components, relationships, and processes of a system or phenomenon. They 

elaborate that it provides a conceptual understanding of how different elements interact and work 

together to achieve a specific goal or outcome and conceptual models help to clarify and 

communicate complex ideas, theories, or systems in a simplified and visual manner. A diagram 

is used in this study give stages of occurrence of the study 
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Figure 1 Conceptual framework for LSTM and SARIMAX 

 

 

 

CHAPTER 3: RESEARCH METHODOLOGY 

3.1 Introduction 
 

A research methodology is a fundamental component in any research as it delineates systematic 

steps and procedures employed by researchers to conduct their investigation. It serves as a 

roadmap that keeps researchers focused, making sure that the study is conducted efficiently, 

effectively, and manageable manner. A well-crafted research methodology is crucial in ensuring 

that the study produces valid and reliable results that can effectively address the research 



19 
 

question (Ali, 2023). This section of the research study examines and discusses key elements of 

research methodology of forecasting malaria cases using timeseries models 

3.2 Research Design 

 

The research design pertains to the blueprint outlining how data was collected, measured, and 

analyzed. It encompasses selection of a comprehensive strategy that harmoniously integrates all 

the research components, ensuring a cohesive and logical approach to effectively address the 

research problem (Creswell, 2014). In this research project, a predictive research design was 

utilized. A predictive research design is a methodology employed to create models or algorithms 

that has the ability to predict or forecast using past data (Hair et al., 2017). This design allows 

researchers to leverage past data patterns to generate insights and projections about future 

outcomes or trends. By developing predictive models or algorithms, researchers can have 

information into the phenomena under investigation and potentially make informed decisions or 

recommendations based on the forecasted results. 

3.3 Research instruments  

 

The researcher analyzed epidemiological reports and statistical data from the DHIS system and 

also analyzed weekly rainfall and temperature records from Kutsaga Tobacco Research Institute 

website. To gather relevant data on malaria cases. The researcher also conducted interviews with 

a health department staff member to have information about the current development of malaria 

programme with current measures taken by the city health department to combat malaria in 

Harare.  

3.4 Data collection  

 The research utilised secondary data from the City Health Department's online database, known 

as DHIS 2, and the website of the Kutsaga Tobacco Research Institute. Additionally, interviews 

were conducted with four health workers to gain insights into the background and the life cycle 

of malaria in Harare, and measures that the government has put in place to combat the 

transmission of malaria in Harare Province and current control programmes of malaria cases in 

Harare Province. The data collected spanned from January 1, 2013, to December 31, 2023, and 

included weekly suspected malaria cases, weekly positive malaria cases, daily rainfall received, 

daily maximum temperature, and daily minimum temperature  
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3.5 Target Population 
 

Donald and Pamela (2013) defined a target population as the overall organization of individuals 

whom the researcher was interested in researching and analysing. The research's target 

population is the general population of Harare, which includes residents and visitors, who are at 

risk of contracting malaria within the city. 

3.6 Description of variable  

 

Variable  Description of the variable 

Weekly received rainfall (WRmm) Amount of rainfall occurred in the week 

expressed in millimetres 

Average Maximum temperature (WATM) Average maximum temperature recorded in 

week expressed in degrees Celsius 

Average Minimum temperature (WATm) Average minimum temperature recorded in a 

week expressed in degrees Celsius 

Weekly positive malaria cases (WPm) Number of malaria cases reported on weekly 

interval 

Weekly suspected malaria cases (WSm) Number of weekly suspected malaria cases 

Week (wk) Week number in a year 

Table 1 Description of variable 

3.7 Expected relation 

The expected relation is that higher rainfall and higher temperatures has positively correlate with 

higher malaria cases  

3.8 Data cleaning  

 

For temperature, last observation carried forward technique was used to fill empty columns for 

daily minimum and maximum temperature data. Last observation carried forward imputation 

replaces missing values with the most recent observed number in the dataset, the assumption is 

that the missing values follow the same pattern as the most recent observed values. For rainfall 

missing values, the mean imputation method was used to calculate the daily missing received 

rainfall, the technique assumes that missing values are similar to the observed values in the 

dataset (Kelleher,2015). After the data was cleaned, a weekly aggregation process was 
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conducted. This entailed grouping the daily data by week and computing the weekly average 

rainfall received, weekly average maximum temperature and weekly average minimum 

temperatures for each week. For positive malaria cases and suspected malaria cases whatsapp 

artificial intelligence programme was used to estimate missing values from week from week 2 to 

week 40 of 2013, week 44 and week 45 of 2013.  

3.9 Diagnostics test 

 

3.9.1 Augmented Dickey Fuller Test  

The test was used to check positive malaria cases and suspected malaria cases data stationarity 

and their exogenous factors data of weekly received rainfall, weekly average temperature and 

weekly minimum temperature. At 5 percent significance level. For positive malaria cases ADF 

Test Statistic was -4.913 with a p-value of 3.191e-05 which concluded stationary data. For 

malaria suspected cases it showed an augmented dickey fuller test statistic: -2.722 p-value: 

0.0701 which concluded that the was not stationery and differencing was applied to make the 

suspected malaria data cases data stationary with ADF Statistic: -11.789 p-value: 9.897e-22 to 

make data stationary. For the exogenous factors   

ADF Test for weekly rainfall Received showed ADF Statistic: -7.117 with p-value of 3.804e-10, 

ADF Test for average weekly max temp ADF Statistic: -7.708 with p-value:1.281e-11, ADF Test 

for average weekly min temp: ADF Statistic: -8.570 with p-value: 8.202e-14. The results 

concluded that the data was stationary for exogenous factors. In time series analysis, checking 

for stationarity is important because stationarity or non-stationarity can affect the behaviour or 

parts of a trend, and therefore the results. 

3.9.2  Model diagnostics 

Model fit plot diagnostics was used to assess the normality of residuals on the models for 

SARIMAX 

3.9.3 Ljung -Box test 

The test was used to check for significance of residuals at 5 percent significant level 

3.10 Models training 

 

The data was divided into train and test sets both the suspected and positive malaria cases test 

sets were set to 0.01 of the total data, and a random state of 42. SARIMAX models with a 

seasonality cycle of 13 weeks were developed. The model that best fits the data was chosen 

based on the smallest value of the Akaike Information Criterion (AIC). The data for weekly 
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suspected malaria cases, positive malaria cases, average weekly rainfall, average weekly 

maximum temperature, and average maximum temperature was normalized before being trained 

to build the LSTM model. The data for both positive and suspected malaria cases was also 

divided into train and test sets, including the exogenous factors. The test size was set to 0.01, and 

the random state was set to 42. The model was trained for 10 epochs for weekly positive malaria 

and batch size 5 and 100 epochs for weekly suspected malaria cases, batch size 3 to predict 

future steps of 30 weeks.  

3.11 Model validation 

 

After training the models, the researcher evaluated the models to assess their validity on the test 

sets based on their MAPE, MAE, and MSE on the test set data, to compare the models and 

determine the most suitable model for predicting positive malaria cases and positive malaria 

cases, based on the MAPE, MSE, and MAE metrics. 

3.12 Visual inspection 

Visual inspection was to used determine the trend of positive malaria cases and suspected 

malaria cases in Harare province, visual inspection was used to check for a monotonic trend for 

positive malaria cases in the data and suspected malaria cases 

3.13 Ethical Considerations  

 

The researcher observed research principles when the research was conducted. Permission was 

required from the City of Harare, city health department to legitimize the study. The researcher 

explained to the respondent’s issues on confidentiality matters and also on the intention of the 

study  
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CHAPTER 4: DATA PRESENTATION, ANALYSIS AND DISCUSSION 

4.1  Introduction 

 

This chapter provides a complete overview of forecasting malaria cases in Harare Province using 

time series models analysis. The objective is to establish trend of malaria cases in Harare 

Province, predict the future trend of malaria cases using time series models, and determine the 

best-performing model in terms MAPE. This chapter contains an in-depth exploration of 

SARIMAX and Lstm model, in forecast positive malaria cases and suspected malaria cases. The 

analysis includes preprocessing and visualization dataset, model selection, validation, and 

evaluation of forecasting performance. The results will provide valuable information into the 
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effectiveness of time series models in predicting malaria cases, contributing to the development 

of effective strategies for malaria control and prevention in Harare Province. 

4.2  Uploading the data into Jupyter note book 

 

The weekly suspected malaria cases and weekly positive malaria cases data was imported into 

jupyternote book as spread sheet file 

 

 

 
Figure 2 importing malaria data file into jupyter 

 

 

 

 

 

 

 

 

 

 

4.3 Checking the dataset for completeness. 
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Figure 3 Results for checking data completeness 

 

From the result in Figure 3 the data had no missing value gaps. The data consisted for a sequency 

572 data and 5 variables. This process ensures the integrity of the dataset and forms the 

foundation for subsequent analyses and forecasting models. 

 

4.4 Results of converting the week into date time index 

 

Figure 4 Changing the week column into datetime index 
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 Figure 4 shows the conversion of week column into datetime column which was set as the index 

and frequency for the timeseries forecast with frequency = 1 week of (w – TUE) 

4.5 Descriptive Statistics  

 

Figure 5 Descriptive statistics for weekly suspected malaria cases 

Figure 5 presents the descriptive statistics for the weekly suspected malaria cases. The data 

shows an average of 203.14 suspected malaria cases per week, with a large standard deviation of 

143.5 indicating substantial variability and spread in the weekly case counts. At the lower end of 

the distribution, the minimum cases of suspected malaria recorded in a single week was 4. 

Looking at the percentiles, 25% of weeks had 77 or fewer suspected cases, the median (50th 

percentile) was 184 or fewer suspected cases per week, and 75% of weeks saw 289 or fewer 

suspected cases. At the high end, the maximum number of suspected malaria cases recorded in a 

single week was 762. The weekly suspected malaria cases exhibited a wide range, from a 

minimum of 4 up to peak of 762, with average suspected malaria cases of about 203 cases per 

week. However, the data was highly variable, as indicated by the large standard deviation of 

143.5. 
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Figure 6 Descriptive statistics for weekly positive malaria cases 

Figure 6 presents the descriptive statistics for the weekly positive malaria cases. On average, the 

data shows 31.664 positive malaria cases per week. However, the standard deviation is quite 

high at 53.67, indicating significant variability and a wide spread in the weekly case counts.  At 

the low end, the minimum number of positive malaria cases recorded in a single week was 0. 

Moving up the distribution, the 25th percentile shows that 25% of weeks had 4 or fewer positive 

cases. The median, or 50th percentile, was 12 positive cases per week. 75% of weeks saw 33 or 

fewer positive cases.  At the high end, the maximum number of positive malaria cases recorded 

in a single week was 362. The average positive case count per week was around 32, the data 

exhibited a large range, from weeks with no positive cases up to an extreme high of 362 positive 

cases in a single week, as indicated by the high standard deviation. 

 

 

 

 

 

4.6 Graphical Visualisation  

Figure 7 and figure 8 show the graphs of suspected malaria cases and positive malaria cases, the 

two graphs both exhibits a diminishing trend  
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Figure 7 Graph for weekly suspected malaria cases 

  

 

Figure 8 Trend for weekly positive malaria cases 
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4.7 Stationarity test 

 

Figure 9 ADF Test statics for weekly suspected malaria cases 

 

Figure 10 ADF Test statistics for weekly positive malaria cases 

 

Figure 11 ADF Test statistics for differenced weekly positive malaria cases 
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Figure 12 ADF Test statistics for exogenous variables 

The figures (9, 10, 11 and 12) shows the results of the ADF test performed for weekly positive 

malaria cases, weekly suspected malaria cases, weekly received rainfall, and average weekly 

maximum temperature variables. For the weekly positive malaria cases, the argument dickey 

fuller   test statistic is -4.919, p-value of 3.198e-05, indicating that the data is stationary. For the 

weekly suspected malaria cases, the initial ADF test statistic is -2.722 with p-value 0.0701, 

suggesting that the data is not stationary. After performing differencing, the augmented dickey 

fuller test statistic for the differenced data -11.789 with a p-value of 9.897e-22, indicating 

stationary. For exogenous factors, the data shows stationary as well: the augmented dickey fuller 

test statistic for weekly rainfall received: -7.117 and p-value of 3.804e-10, the ADF test statistic 

for average weekly maximum temperature is -7.708 with p-value 1.281e-11, and the ADF test 
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statistic for average weekly minimum temperature is -8.570 with a p-value of 8.202e-14. At a 

significance level of 5 percent significant level. 

4.8 Decomposition graph for suspected malaria cases and positive  

 

Figure 13 Decomposed plot for weekly suspected malaria cases 

 

The weekly suspected malaria cases' time series breakdown is displayed in Figure 13. The observed data, 

or the real weekly time series of suspected malaria cases, is shown in the first graphic. The trend 

component is seen in the second plot. It shows a gradual decline in the total number of suspected cases of 
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malaria. The seasonal component is displayed in the third plot. The recurring pattern in this graphic over 

time indicates that there is seasonality in the data. The residuals are shown in the final plot. These are the 

data variances that the observed trend and seasonal components are unable to explain. The unexplained 

fluctuations or irregular causes impacting the suspected numbers of malaria cases are represented by the 

residuals. 

 

4.8.1 Decomposed graph for suspected malaria cases  

 

Figure 14 Decomposed plot for weekly positive malaria cases 

Figure 14 shows the decomposition plots for weekly positive malaria cases.  First plot displays 

the observed data - the actual weekly time series of positive malaria cases. Second plot reveals 

the trend component. The trend indicates a decrease in overall number of weekly positive 

malaria cases from 2013 up to 2023. Third plot shows the seasonal component. The plot exhibits 

a recurrent pattern over time, demonstrating seasonality in the positive malaria case data. Last 

plot show residuals. These are the variations in the data that are not explained by the identified 

trend and seasonal components. The residuals represent the unexplained fluctuations or irregular 

factors influencing the weekly positive malaria case counts 
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4.9 ACF and PACF for weekly suspected 

Fig 15 shows an ACF and PACF plots portrayed below reflected about how observations in time 

series are being indexed over time and how well are they related to each other for suspected 

malaria cases up lag 20.  The two plots clarify the order concept in Autoregressive and Moving 

Averages in time series analysis. The PACF shows 4 significant lags 

 

Figure 15 ACF and PACF plot for weekly suspected malaria cases 

4.9.1 ACF and PACF for weekly positive malaria cases 

Figure 16 shows ACF and PACF plots for weekly positive malaria cases with ACF plot showing 

a slowly decay from lag 1 up to lag 20. The ACF shows that 10 significant lag excluding the lag 

0 which shows the relationship between the current lag and its self  

 

Figure 16 ACF and PACF plot for weekly positive malaria cases 
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4.10 Model identification for weekly suspected malaria cases  

 

 

Figure 17 Model identification parameters with the lowest AIC 

Figure 17 shows all AIC values with their respective to the p, q, P, Q parameters used to select 

the best-fit model. For the weekly suspected malaria cases, the data required differencing once to 

reach stationarity, so D=1 and d=0. The best-fit model for the weekly suspected malaria cases 

was the SARIMAX (3,0,3)(0,0,0,13) model. . 

4.10.1  summary of the best-fit model results   
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Figure 18 Summary Statistics for SARIMAX(3,1,3)(0,0,0,13) 

Figure 18 shows  SARIMAX(3,1,3)(0,0,0,13)  and coefficient for weekly suspected malaria 

cases 

Model Fit: 

The log-likelihood coefficient is -3038.845, the Akaike Information Criterion (AIC) is 6097.690, 

the Bayesian Information Criterion (BIC) is 6141.040, and the Hannan-Quinn Information 

Criterion (HQIC) is 6114.612. This information criteria suggest that the model provides a 

reasonable fit to the data, as lower values indicate better model fit. 

Coefficient Estimates: 

The coefficient estimates for the model's terms are provided, along with their standard errors, z-

statistics, and p-values. Coefficients for weather variables (weekly rainfall received, average 

weekly maximum temperature, and average weekly minimum temperature) are not statistically 

significant at the 5% level, indicating that these variables may not significant impact on weekly 
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suspected malaria cases.  AR and MA coefficients are all statistically significant, suggesting 

these terms are important in capturing the temporal dynamics of the time series. 

 Residual Diagnostics:  

 The Ljung-Box (L1) test for autocorrelation in the residuals has a p-value of 0.47, indicating that 

there is no significant autocorrelation in the residuals. 

  The Jarque-Bera (JB) test for normality of the residuals has a p-value of 0.00, suggesting that 

the residuals do not follow a normal distribution. The heteroskedasticity (H) test has a p-value of 

0.00, indicating the presence of heteroskedasticity (non-constant variance) in the residuals. 

4.11 Model identification for weekly positive malaria cases  

Figure 19 To select the best fit model, the researchers used (AIC). The model with the lowest 

AIC was chosen as best fit model for the weekly positive malaria cases, the data was stationary, 

so no differencing was required (d=0 and D=0). The best fit model for the weekly suspected 

malaria cases was the SARIMAX(6,0,6)(0,0,6,13). The summary of the results for best fit model 

is presented in Figure 20 

 

Figure 19 Model identification parametres for weekly positive malaria cases 

4.11.1 Summary statistics for the identified model 
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Figure 20 Summary statistics for SARIMAX(6,0,6)(0,0,6,13) 

Figure 20 provides a comprehensive summary of the model's performance and relationships 

between response variable and explanatory variables. 

The coefficient for weekly rainfall received is -0.0345, indicating a negative relationship 

between rainfall and weekly positive malaria cases, though this relationship is not statistically 

significant at the 5% level (p-value = 0.099). 

The coefficients for average weekly maximum and minimum temperatures are 0.1074 and 0.168, 

respectively, suggesting a positive relationship between temperatures and malaria cases, but 

these relationships are also not statistically significant (p-values > 0.05). 

The autoregressive (AR) terms show a mix of positive and negative coefficients, with significant 

coefficients for lags 1, 2, 3, 5, and 6, indicating a complex autoregressive structure in the data. 
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The moving average (MA) terms also show a mix of positive and negative coefficients, but only 

the seasonal MA terms at lags 13, 26, 39, 52, and 65 are statistically significant, suggesting the 

presence of a strong seasonal component in the data. 

The model has a log-likelihood of -2406.122, an AIC of 4856.244, and a BIC of 4951.654, 

indicating a reasonably good fit.  

The Ljung-Box test for autocorrelation in the residuals is not significant (p-value = 0.95), 

suggesting the model has adequately captured the temporal structure in the data. 

The Jarque-Bera test rejects the null hypothesis of normality in the residuals (p-value < 0.01), 

indicating potential non-normality. The Heteroskedasticity (H) test also suggests the presence of 

heteroskedasticity in the residuals (p-value < 0.01). 

4.12 Residual Analysis for weekly suspected malaria cases 

 

 

Figure 21 Model fit plot diagnostics for weekly suspected malaria cases 

The residual analysis of the chosen model, SARIMAX(3,1,3)(0,0,0,13), is displayed in Figure 

21. Similar to white noise, the residuals show no trend and a relatively steady variance over time. 

The residual distribution in the top-right plot closely resembles a normal distribution. The Q-Q 
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plot in the bottom left, which displays a comparatively straight line that sits on y = x, lends 

additional credence to this. Lastly, similar to white noise, the correlogram displays no significant 

coefficients after lag 0 with no significant latency. As a result, the residuals of this model 

resemble white noise when viewed graphically. 

 

4.12.1  Residual analysis for weekly positive malaria cases 

 

Figure 22 Model fit plot diagnostics for positive malaria cases 

Figure 22 shows the residual analysis of the selected model SARIMAX(6,0,6)(0,0,6,13). 

Compared to white noise, the residuals show no trend and a relatively steady variance over time. 

The residual distribution in the top-right plot resembles a normal distribution quite a bit. The Q-

Q plot in the bottom left, which displays a comparatively straight line that sits on y = x, lends 

additional credence to this. Lastly, following lag 0, the correlogram displays no significant 

coefficients, much like white noise. As a result, the residuals of this model resemble white noise 

when viewed graphically. 
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4.13 Prediction for the SARIMAX on the test set  

 

Figure 23 SARIMAX(3,1,3)(0,0,0,13) test set predictions 

Figure 23 shows SARIMAX(3,1,3)(0,0,0,13) predicated values for suspected  malaria cases from 

week 561  to week 571values on the test values 

 

 

Figure 24 SARIMAX(2,0,3)(3,0,2,13) test set predictions 

Figure 24 shows SARIMAX(6,0,6)(0,0,6,13) predicated values for weekly positive malaria cases 

from week 561  to week 571 on the test set  

4.14 Model validation 

 MAE MAPE MSE 

Suspected malaria cases 

SARIMAX(3,1,3,)(0,0,0,13) 

12.12 20.00% 275.73 

Positive malaria cases 

SARIMAX(6,0,6)(0,0,6,13) 

2.54 Inf% 10.45 

Table 2 Model validation for SARIMAX models 
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Table 3 shows results for the SARIMAX models, the SARIMAX (3,1,3)(0,0,0,13)  MAPE for  

prediction 20.00%. The Mean Absolute Percentage Error (MAPE) is 20.00%, indicating that on 

average, the model's predictions differ from the actual values by 20% in relative terms. A MAPE 

of 20% suggests the SARIMAX model is making reasonably accurate percentage-based 

forecasts, with a moderate level of error. The mean squared error is 275.39, which measures the 

average squared difference between the predicted with actual values. This relatively high MSE 

value suggests the SARIMAX model is making predictions with a larger degree of absolute 

error, on average. The mean absolute error is 12.12, indicating the average absolute difference 

between the predicted and actual values. The MAE with 12.12 indicates that the SARIMAX 

model is making predictions with an average absolute error of approximately 12 units for the 

weekly suspected malaria cases. The above table shows model performance metrics for the 

SARIMAX (6,0,6)(0,0,6,13) forecast of the weekly positive malaria cases. The MAPE (Mean 

Absolute Percentage Error) for the SARIMAX (6,0,6)(0,0,6,13) prediction is reported as inf%, 

indicating that the model is unable to make accurate percentage-based forecasts. This is likely 

due to the presence of zero or near-zero values in the actual time series, which can cause the 

percentage error to become extremely large or undefined. The MSE (Mean Squared Error) for 

the SARIMAX (6,0,6)(0,0,6,13)prediction is 10.45, suggesting the model is making reasonably 

accurate predictions, on average, with a moderate degree of error. The MAE (Mean Absolute 

Error) for the SARIMAX (6,0,6)(0,0,6,13) prediction is 2.54, indicating the model is making 

predictions with an average absolute error of 2.54 units. 
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4.15 Forecasting the Future Weekly Suspected Malaria Forecast 
 

 

Figure 25 Forecasted results for weekly suspected malaria cases 

Fig 25 shows the forecasted results for weekly suspected ma; for the next 30 weeks for weekly 

suspected malaria cases. 

 

 

Figure 26 Graph forecast for weekly suspected malaria cases 
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Figure 26 shows the graph for weekly suspected malaria cases from 0 – 10 time it shows 

predicted SARIMAX versus actual weekly suspected malaria cases in dataset or the test set. 

From 11- 40 time it shows the predicted suspected malaria cases   

4.16 Weekly positive malaria forecast 

 

Figure 27 Forecasted results for weekly positive malaria cases 

Figure 27 shows SARIMAX (6,0,6)(0,0,6,13) forecast for  the 30 weeks of 2024  for weekly 

positive malaria cases 

 

Figure 28 Graph for weekly positive malaria forecast 



44 
 

Figure 28 shows a graph of weekly positive malaria cases from 0 to 10, displaying the predicted 

SARIMAX and the actual weekly positive malaria cases in the dataset or test set. From 11 to 40, 

it displays the future forecast of expected malaria cases.   

4.17  Long Short Time Memory 

 

 

Figure 29 Normalised before being used for Lstm development 

Fig 29 shows the normalised data results for an LSTM model before being split for training and 

testing data.  
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Figure 30 Training and Validation loss Graph for weekly suspected malaria cases 

Fig 30 shows the training and validation loss graphs for weekly suspected malaria cases, the 

graph shows a narrow space between training loss function and validation loss function implying 

a difference in performance between model ability to fit the training data and its ability to 

extrapolate to new, unseen data. The small gaps between training loss and validation indicate a 

good generalization  

 

 

Figure 31  Training and validation loss graph for weekly positive malaria cases 

Fig 31 shows the training and validation loss function graphs for weekly suspected malaria cases, 

the graph shows a major difference between the training loss and validation loss. function 

implying the difference in performance between model's ability to fit the training data and its 
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ability to generalise to new future data, the large gaps between train loss and validation indicate 

suggest an overfit  

 

4.18 Model summary for Lstm for positive malaria cases  

 
Figure 32 Model summary for LSTM weekly positive malaria cases 

 

4.18.1  Model summary for Lstm for positive malaria cases 

 
Figure 33 Model summary for weekly positive malaria cases 
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4.19 Validation metrics 

 MAPE MAE MSE 

Lstm for positive 

malaria cases 

259759251806283.3 35.680 3787.530 

Lstm for suspected 

malaria cases 

0.999 224.497 77.357 

Table 3 Model validation for Long short-term memory results 

Table 4 shows the results of validation metric for LSTM model  

For weekly suspected malaria cases the Mean Squared Error (MSE) of 77,357.87 indicates the 

model is making predictions with relatively small average squared errors. This indicates that the 

model is effectively capturing the patttern. The mean absolute error (MAE) of 224.50 provides 

further confirmation - the average absolute difference between projected and actual results is 

around 224 suspected malaria cases. This is a fairly low error margin, especially for a public 

health metric like this. The mean absolute percentage error (MAPE) of 0.999 (or 99.99%) is 

exceptionally low. This implies the model's percentage-based prediction errors are very small, 

meaning it is making highly accurate forecasts relative to the true suspected malaria case counts. 

The Mean Squared Error (MSE) of 3,787.53 suggests the model is making predictions with fairly 

large average squared errors. This points to substantial differences between the predicted and 

actual positive malaria case counts. 
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4.20 Forecast 

4.20.1  Forecasted values for weekly suspected malaria cases 

 

Figure 34 Forecast for suspected malaria cases for 30 weeks 

Fig 34 shows the forecasting result for long-short memory for the first 30 weeks of 2024 

 

 

Figure 35 Graph for weekly suspected malaria forecast lstm 

Figure 35 shows the actual weekly suspected malaria cases, forecasted malaria and future 

forecast made by the long short-term memory  
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4.21 Forecast for weekly positive malaria cases 

 

Figure 36 weekly positive malaria cases forecast 

Fig 36 shows the forecast results for the first 30 week of 2024 of Long short term model  

 

Figure 37 Graph for weekly positive malaria forecast 

Figure 37 shows the actual weekly positive malaria cases, forecasted malaria and future forecast 

made by the long short-term memory.  
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4.22 Summary  

This chapter presents the results of the data analysis and modelling process which aimed to 

identify the most appropriate time-series models for forecasting malaria cases in Harare 

province. Through a rigorous diagnostics testing process. The developed models were validated 

for their accuracy and reliability. The models were then used to forecast future the number of 

weekly positive malaria cases and weekly suspected malaria cases for the next 30 weeks of 2024.  

Chapter 5 below presence the research findings in detail  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 5: SUMMARY, CONCLUSION AND RECOMMENDATIONS 

5.1 Introduction  

This chapter presents a summary of the key findings from the study, along with 

recommendations for future research and a conclusion. The study aimed to forecast the dynamics 
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of Malaria cases in Harare Province using time series models, including SARIMAX and deep 

learning approach 

5.2 Summary of Research Findings 

For suspected malaria cases the LSTM model achieved excellent performance, with an MSE of 

77,357.87, MAE of 224.50, and an exceptionally low MAPE of 0.999 (99.99%). These metrics 

indicate the LSTM model is making highly accurate, low-error predictions for suspected malaria 

cases, capturing the underlying patterns in the data very well. The model would likely be very 

useful for real-world malaria surveillance and planning purposes given its strong predictive 

capabilities for suspected cases. For weekly positive malaria cases the LSTM model struggled 

significantly with predicting positive malaria cases, with an MSE of 3,787.53 and a  

catastrophically high MAPE of over 259 trillion percent. The results suggested the LSTM model 

has fundamental issues accurately forecasting positive malaria cases, likely due to shortcomings 

in the model architecture, feature engineering, or training data quality. The model would not be 

suitable for real-world applications targeting positive malaria case prediction in its current state. 

For the SARIMAX model performance for weekly suspected malaria case prediction, the 

SARIMAX (3,1,3)(0,0,0,13) model achieved a MAPE of 20%, indicating reasonably accurate 

percentage-based forecasts with a moderate level of error. The MSE of 275.39 and MAE of 

12.12 for the SARIMAX model suggest it is making predictions with a larger degree of absolute 

error compared to the LSTM model's performance on suspected cases. For positive malaria case 

prediction, the SARIMAX (6,0,6)(0,0,6,13) model had an undefined MAPE due to issues with 

zero/near-zero values, but a more reasonable MSE of 10.45 and MAE of 2.54. The LSTM model 

appears to be the superior performer for suspected malaria case prediction, while both the LSTM 

and SARIMAX models struggle to some degree with accurately forecasting positive malaria 

cases. Further model refinement and exploration of alternative approaches may be necessary to 

improve positive case prediction capabilities. 

The research also noted a decrease in the general trend for malaria cases in Harare provinces 

5.3 Recommendations 

The provincial health authorities should maintain a robust system for monitoring and recording 

Malaria cases, as this data is crucial for accurate forecasting and effective intervention planning.  

Future research could investigate the potential benefits of combining SARIMAX and LSTM 

models, or other time series techniques, to further improve the accuracy and reliability of Malaria 

case forecasts. The inclusion of other relevant variables, such as socioeconomic factors, 
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vegetation index and public health interventions routines data, to enhance the predictive power of 

the time series models. 

5.4 Conclusion 

This study has demonstrated the effectiveness of time series models, particularly the LSTM 

approach, in forecasting the dynamics of Malaria cases in Harare Province. The findings provide 

valuable insights for public health authorities and policymakers in their efforts to monitor, 

predict, and respond to the Malaria burden in Harare Province. The recommendations outlined in 

this chapter suggest a background for further research and improvements to the forecasting tools, 

ultimately supporting the goal of reducing the impact of Malaria in Zimbabwe. 
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APPENDIX 1  

Jupyternote book python codes 

from sklearn.metrics import mean_squared_error, mean_absolute_error 

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf 

from statsmodels.tsa.seasonal import seasonal_decompose, STL 

from statsmodels.stats.diagnostic import acorr_ljungbox 

from statsmodels.tsa.statespace.sarimax import SARIMAX 

from statsmodels.tsa.arima_process import ArmaProcess 

from statsmodels.graphics.gofplots import qqplot 

from statsmodels.tsa.stattools import adfuller 

from tqdm import tqdm_notebook 

from itertools import product 
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from typing import Union 

import matplotlib.pyplot as plt 

import statsmodels.api as sm 

import pandas as pd 

import numpy as np 

import warnings 

warnings.filterwarnings('ignore') 

%matplotlib inline 

 

import pandas as pd 

df = pd.read_excel ("C:\\Users\\hp\\documents\\malaria2015.xlsx") 

df.head () 

df.head() 

df.info() 

 

df['date']= pd.Timestamp('2013-01-01') + pd.to_timedelta(df['week'].astype(str) + 'W') 

df.set_index('date', inplace= True) 

print(df.index.dtype) 

print(df.head()) 

print(df.index.dtype) 

df.index.inferred_freq 

df.index.freq= df.index.inferred_freq 

 

# Print the frequency 

print(df.index.freq) 

 

import pandas as pd 

 

# Assuming 'df' is your DataFrame with the malaria cases data 

# Assuming 'malaria_cases' is the column representing the malaria cases 

 

# Calculate descriptive statistics 

statistics = df['weekly suspected malaria'].describe() 

 

# Print the descriptive statistics 

print(statistics) 

 

import pandas as pd 

 

# Assuming 'df' is your DataFrame with the malaria cases data 

# Assuming 'malaria_cases' is the column representing the malaria cases 

 

# Calculate descriptive statistics 

statistics = df['weekly positive malaria cases'].describe() 

 

# Print the descriptive statistics 
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print(statistics) 

 

import matplotlib.pyplot as plt 

 

df['weekly suspected malaria'].plot() 

 

plt.xlabel('Year-Week') 

plt.ylabel('Weekly Suspected Malaria') 

plt.title('Weekly Suspected Malaria Cases') 

 

plt.xticks(rotation=45) 

plt.tight_layout() 

 

plt.show() 

 

 

 

import matplotlib.pyplot as plt 

 

df['weekly suspected malaria'].plot() 

 

plt.xlabel('Year-Week') 

plt.ylabel('Weekly Suspected Malaria') 

plt.title('Weekly Suspected Malaria Cases') 

 

plt.xticks(rotation=45) 

plt.tight_layout() 

 

plt.show() 

 

import matplotlib.pyplot as plt 

 

df['weekly positive malaria cases'].plot(color='green') 

 

plt.xlabel('Year-Week') 

plt.ylabel('weekly positive malaria cases') 

plt.title('weekly positive malaria cases') 

 

plt.xticks(rotation=45) 

plt.tight_layout() 

 

plt.show() 

 

import matplotlib.pyplot as plt 

 

# Set the figure size 



58 
 

plt.figure(figsize=(10, 6)) 

 

# Calculate the rolling mean and rolling standard deviation 

rolling_mean = df['weekly suspected malaria'].rolling(window=4).mean() 

rolling_std = df['weekly suspected malaria'].rolling(window=4).std() 

 

# Plot the original data, rolling mean, and rolling standard deviation 

plt.plot(df.index, df['weekly suspected malaria'], label='Original') 

plt.plot(df.index, rolling_mean, label='Rolling Mean') 

plt.plot(df.index, rolling_std, label='Rolling Std') 

 

plt.xlabel('Year-Week') 

plt.ylabel('Weekly Suspected Malaria') 

plt.title('Weekly Suspected Malaria with Rolling Statistics') 

plt.legend() 

 

# Reduce the number of visible x-axis tick labels 

num_ticks = 8 

plt.xticks(df.index[::len(df.index)//num_ticks], rotation=45) 

 

plt.tight_layout() 

plt.show() 

 

import matplotlib.pyplot as plt 

 

# Set the figure size 

plt.figure(figsize=(10, 6)) 

 

# Calculate the rolling mean and rolling standard deviation 

rolling_mean = df['weekly positive malaria cases'].rolling(window=4).mean() 

rolling_std = df['weekly positive malaria cases'].rolling(window=4).std() 

 

# Plot the original data, rolling mean, and rolling standard deviation 

plt.plot(df.index, df['weekly positive malaria cases'], label='Original') 

plt.plot(df.index, rolling_mean, label='Rolling Mean') 

plt.plot(df.index, rolling_std, label='Rolling Std') 

 

plt.xlabel('Year-Week') 

plt.ylabel('weekly positive malaria cases') 

plt.title('weekly positive malaria cases with Rolling Statistics') 

plt.legend() 

 

# Reduce the number of visible x-axis tick labels 

num_ticks = 8 

plt.xticks(df.index[::len(df.index)//num_ticks], rotation=45) 
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plt.tight_layout() 

plt.show() 

 

import pandas as pd 

import statsmodels.api as sm 

import matplotlib.pyplot as plt 

# Decompose the time series into trend, seasonality, and residuals 

decomp = sm.tsa.seasonal_decompose(df['weekly suspected malaria'], model='additive', 

period=13) 

 

# Extract the trend, seasonality, and residuals 

trend = decomp.trend 

seasonal = decomp.seasonal 

residual = decomp.resid 

 

# Plot the decomposition 

plt.figure(figsize=(12, 8)) 

plt.subplot(411) 

plt.plot(df['weekly suspected malaria'], label='Original', color='blue') 

plt.legend(loc='best') 

plt.title('Decomposition Plot') 

num_ticks = 8 

plt.xticks(df.index[::len(df.index)//num_ticks], rotation=45) 

plt.subplot(412) 

plt.plot(trend, label='Trend', color='blue') 

plt.legend(loc='best') 

num_ticks = 8 

plt.xticks(df.index[::len(df.index)//num_ticks], rotation=45) 

plt.subplot(413) 

plt.plot(seasonal, label='Seasonality', color='blue') 

plt.legend(loc='best') 

num_ticks = 8 

plt.xticks(df.index[::len(df.index)//num_ticks], rotation=45) 

plt.subplot(414) 

plt.plot(residual, label='Residuals', color='blue') 

plt.legend(loc='best') 

plt.tight_layout() 

num_ticks = 8 

plt.xticks(df.index[::len(df.index)//num_ticks], rotation=45) 

 

plt.show() 

 

# Decompose the time series into trend, seasonality, and residuals 

decomp = sm.tsa.seasonal_decompose(df['weekly positive malaria cases'], model='additive', 

period=13) 
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# Extract the trend, seasonality, and residuals 

trend = decomp.trend 

seasonal = decomp.seasonal 

residual = decomp.resid 

 

# Plot the decomposition 

plt.figure(figsize=(12, 8)) 

plt.subplot(411) 

plt.plot(df['weekly positive malaria cases'], label='Original', color='green') 

plt.legend(loc='best') 

plt.title('Decomposition Plot') 

num_ticks = 8 

plt.xticks(df.index[::len(df.index)//num_ticks], rotation=45) 

plt.subplot(412) 

plt.plot(trend, label='Trend', color='green') 

plt.legend(loc='best') 

num_ticks = 8 

plt.xticks(df.index[::len(df.index)//num_ticks], rotation=45) 

plt.subplot(413) 

plt.plot(seasonal, label='Seasonality', color='green') 

plt.legend(loc='best') 

num_ticks = 8 

plt.xticks(df.index[::len(df.index)//num_ticks], rotation=45) 

plt.subplot(414) 

plt.plot(residual, label='Residuals', color='green') 

plt.legend(loc='best') 

plt.tight_layout() 

num_ticks = 8 

plt.xticks(df.index[::len(df.index)//num_ticks], rotation=45) 

 

plt.show() 

 

from statsmodels.tsa.stattools import adfuller 

 

# Perform ADF test on suspected malaria cases data 

adf_result = adfuller(df['weekly suspected malaria']) 

 

# Extract and print the test statistics and p-value 

test_statistic = adf_result[0] 

p_value = adf_result[1] 

print(f"ADF Test Statistic: {test_statistic}") 

print(f"p-value: {p_value}") 

 

# Interpret the test results 

if p_value < 0.05: 

    print("The data is stationary (reject the null hypothesis)") 
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else: 

    print("The data is non-stationary (fail to reject the null hypothesis)" 

 

from statsmodels.tsa.stattools import adfuller 

 

# Perform ADF test on suspected malaria cases data 

adf_result = adfuller(df['weekly positive malaria cases']) 

 

# Extract and print the test statistics and p-value 

test_statistic = adf_result[0] 

p_value = adf_result[1] 

print(f"ADF Test Statistic: {test_statistic}") 

print(f"p-value: {p_value}") 

 

# Interpret the test results 

if p_value < 0.05: 

    print("The data is stationary (reject the null hypothesis)") 

else: 

    print("The data is non-stationary (fail to reject the null hypothesis)") 

 

import pandas as pd 

import numpy as np 

from statsmodels.tsa.stattools import adfuller 

 

# Assuming df is your DataFrame 

 

# Perform differencing on the column 

df['diff_weekly_suspected_malaria'] = df['weekly suspected malaria'].diff() 

 

# Drop rows with missing values in 'diff_weekly_suspected_malaria' 

df.dropna(subset=['diff_weekly_suspected_malaria'], inplace=True) 

 

# Apply the ADF test to check for stationarity 

result = adfuller(df['diff_weekly_suspected_malaria'].dropna()) 

 

# Print the ADF test results 

print('ADF Statistic:', result[0]) 

print('p-value:', result[1]) 

print('Critical Values:') 

for key, value in result[4].items(): 

    print(f'{key}: {value}') 

    # Interpret the test results 

if p_value < 0.05: 

    print("The data is stationary (reject the null hypothesis)") 

else: 

    print("The data is non-stationary (fail to reject the null hypothesis)") 
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from statsmodels.tsa.stattools import adfuller 

 

# Extract the exogenous variables from the DataFrame 

df.columns= df.columns.str.lstrip() 

exog_variables = df[['weekly rainfall Received', 'average weekly max temp', 'average weekly 

min temp']] 

# Remove leading spaces from column names 

exog_variables.columns = exog_variables.columns.str.lstrip() 

# Perform ADF test for each exogenous variable 

for column in exog_variables: 

    result = adfuller(exog_variables[column]) 

    print(f"ADF Test for {column}:") 

    print(f"ADF Statistic: {result[0]}") 

    print(f"p-value: {result[1]}") 

    print(f"Critical Values:") 

    for key, value in result[4].items(): 

        print(f"  {key}: {value}") 

    print("------------------------") 

    # Interpret the test results 

if p_value < 0.05: 

    print("The data is stationary (reject the null hypothesis)") 

else: 

    print("The data is non-stationary (fail to reject the null hypothesis)") 

 

 

import pandas as pd 

df.columns = df.columns.str.strip() 

# Assuming you have already read the data into a DataFrame df 

 

# Perform differencing on the exogenous factors 

df['diff_weekly_rainfall'] = df['weekly rainfall Received'].diff() 

df['diff_average_max_temp'] = df['average weekly max temp'].diff() 

df['diff_average_min_temp'] = df['average weekly min temp'].diff() 

 

# Perform differencing on the suspected malaria cases 

df['diff_suspected_malaria_cases'] = df['weekly suspected malaria'].diff() 

 

# Remove the first row with NaN values 

df = df.dropna() 

 

# Print the head of the DataFrame to check the differenced data 

print(df.head()) 

 

 

import pandas as pd 

import statsmodels.api as sm 
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import matplotlib.pyplot as plt 

 

# assuming 'df' is your pandas DataFrame 

# and 'weekly_suspected_malaria' is the column with the weekly suspected malaria cases 

 

# calculate the difference 

df['diff_suspected_malaria_cases'] = df['weekly suspected malaria'].diff() 

# Remove the first row with NaN values 

df = df.dropna() 

# convert the index to a Datetimework 

 

df.index.freq = 'W-TUE' 

# STL decomposition 

decomposition = sm.tsa.seasonal_decompose(df['diff_suspected_malaria_cases'], 

model='additive') 

 

# plot the decomposition 

fig, ax = plt.subplots(4, 1, sharex=True, figsize=(12, 8)) 

ax[0].plot(df['diff_suspected_malaria_cases'], label='Differenced') 

ax[0].legend(loc='best') 

ax[1].plot(decomposition.trend, label='Trend') 

ax[1].legend(loc='best') 

ax[2].plot(decomposition.seasonal, label='Seasonality') 

ax[2].legend(loc='best') 

ax[3].plot(decomposition.resid, label='Residuals') 

ax[3].legend(loc='best') 

plt.show() 

 

 

# Decompose the time series into trend, seasonality, and residuals 

decomp = sm.tsa.seasonal_decompose(df['weekly positive malaria cases'], model='additive', 

period=13) 

 

# Extract the trend, seasonality, and residuals 

trend = decomp.trend 

seasonal = decomp.seasonal 

residual = decomp.resid 

 

# Plot the decomposition 

plt.figure(figsize=(12, 8)) 

plt.subplot(411) 

plt.plot(df['weekly positive malaria cases'], label='Original', color='green') 

plt.legend(loc='best') 

plt.title('decomposition for weekly positive malaria cas') 

num_ticks = 8 

plt.xticks(df.index[::len(df.index)//num_ticks], rotation=45) 
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plt.subplot(412) 

plt.plot(trend, label='Trend', color='green') 

plt.legend(loc='best') 

num_ticks = 8 

plt.xticks(df.index[::len(df.index)//num_ticks], rotation=45) 

plt.subplot(413) 

plt.plot(seasonal, label='Seasonality', color='green') 

plt.legend(loc='best') 

num_ticks = 8 

plt.xticks(df.index[::len(df.index)//num_ticks], rotation=45) 

plt.subplot(414) 

plt.plot(residual, label='Residuals', color='green') 

plt.legend(loc='best') 

plt.tight_layout() 

num_ticks = 8 

plt.xticks(df.index[::len(df.index)//num_ticks], rotation=45) 

 

plt.show() 

 

import pandas as pd 

import matplotlib.pyplot as plt 

import statsmodels.api as sm 

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf 

from itertools import product 

# Plot ACF and PACF 

fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 6)) 

plot_acf(df['diff_suspected_malaria_cases'], lags=20, ax=ax1) 

plot_pacf(df['diff_suspected_malaria_cases'], lags=20, ax=ax2) 

plt.show() 

 

import pandas as pd 

import matplotlib.pyplot as plt 

import statsmodels.api as sm 

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf 

from itertools import product 

# Plot ACF and PACF 

fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 6)) 

plot_acf(df['weekly positive malaria cases'], lags=20, ax=ax1) 

plot_pacf(df['weekly positive malaria cases'], lags=20, ax=ax2) 

plt.show() 

 

 

import pandas as pd 

from statsmodels.tsa.statespace.sarimax import SARIMAX 

from tqdm import tqdm_notebook 

from itertools import product 
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import numpy as np 

#Load the dataset 

df = pd.read_excel("C:\\Users\\hp\\documents\\malaria2015.xlsx") 

df.columns = df.columns.str.strip() 

# Handle infinite or missing values 

df.dropna(inplace=True) 

df.replace([np.inf, -np.inf], 0, inplace=True) 

 

#Prepare the dataset 

target = df['weekly suspected malaria']  

exog = df[['weekly rainfall Received', 'average weekly max temp', 'average weekly min temp']] 

 

#Define the range of possible values for the orders p, q, P, and Q* 

p = range(0, 6, 3) 

d = 1 

q = range(0, 6, 3) 

P = range(0, 6, 3) 

D = 0 

Q = range(0, 6, 3) 

s = 13  # Since the data is collected weekly, s = 13 

 

#Generate a list of unique combinations of parameters 

parameters = product(p, q, P, Q) 

parameters_list = list(parameters) 

 

#Train the model using the first 400 instances 

target_train = target[:565] 

exog_train = exog[:565] 

 

def optimize_SARIMAX(endog, exog, order_list, d, D, s): 

    results = [] 

    for order in tqdm_notebook(order_list): 

        try: 

            model = SARIMAX( 

                endog, 

                exog, 

                order=(order[0], d, order[1]), 

                seasonal_order=(order[2], D, order[3], s), 

                simple_differencing=False 

            ).fit(disp=False) 

        except: 

            continue 

        aic = model.aic 

        results.append([order, aic]) 

    result_df = pd.DataFrame(results) 

    result_df.columns = ['(p,q,P,Q)', 'AIC'] 
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    # Sort in ascending order, lower AIC is better 

    result_df = result_df.sort_values(by='AIC', ascending=True).reset_index(drop=True) 

    return result_df 

#Run the optimize_SARIMAX function and select the model with the lowest AIC 

result_df = optimize_SARIMAX(target_train, exog_train, parameters_list, d, D, s) 

print(result_df) 

  

 

import pandas as pd 

from statsmodels.tsa.statespace.sarimax import SARIMAX 

from tqdm import tqdm_notebook 

from itertools import product 

import numpy as np 

model= SARIMAX(target_train, exog_train, order= (3, 1, 3), seasonal_order=(0, 0, 0, 13), 

simple_differencing= False) 

model_fit= model.fit(disp= False) 

print(model_fit.summary()) 

model_fit.plot_diagnostics(figsize=(10,8)) 

 

residuals = model_fit.resid 

lbvalue, pvalue = acorr_ljungbox(residuals, np.arange(1, 11, 1)) 

print(residuals) 

 

def rolling_forecast(endog: Union[pd.Series, list], exog:  

Union[pd.Series, list], train_len: int, horizon: int, window: int,  

method: str) -> list: 

    total_len = train_len + horizon 

    if method == 'last': 

        pred_last_value = [] 

        for i in range(train_len, total_len, window): 

            last_value = endog[:i].iloc[-1] 

            pred_last_value.extend(last_value for _ in range(window)) 

        return pred_last_value 

    elif method == 'SARIMAX': 

        pred_SARIMAX = [] 

        for i in range(train_len, total_len, window): 

            model = SARIMAX(endog[:i], exog[:i], order=(3,1,3),  

            seasonal_order=(0,0,0,13), simple_differencing=False) 

            res = model.fit(disp=False) 

            predictions = res.get_prediction(exog=exog) 

            oos_pred = predictions.predicted_mean.iloc[-window:] 

            pred_SARIMAX.extend(oos_pred) 

        return pred_SARIMAX 

    print(pred_SARIMAX) 

 

target_train = target[:561] 
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target_test = target[561:] 

pred_df = pd.DataFrame({'actual': target_test}) 

 

TRAIN_LEN = len(target_train) 

HORIZON = len(target_test) 

WINDOW = 1 

 

pred_last_value = rolling_forecast(target, exog, TRAIN_LEN, HORIZON, WINDOW, 'last') 

pred_SARIMAX = rolling_forecast(target, exog, TRAIN_LEN, HORIZON, WINDOW, 

'SARIMAX') 

 

pred_df['pred_last_value'] = pred_last_value 

pred_df['pred_SARIMAX'] = pred_SARIMAX 

 

print(pred_df) 

 

 

import numpy as np 

import pandas as pd 

from statsmodels.tsa.statespace.sarimaxSARIMAX import SARIMAX 

 

# Assuming you have the following data: 

data = pd.DataFrame({ 

    'actual': [68, 51, 67, 56, 61, 85, 58, 57, 79, 64, 49], 

    'pred_last_value': [52, 68, 51, 67, 56, 61, 85, 58, 57, 79, 64], 

    'pred_SARIMAX': [68.818557, 60.106570, 68.488238, 61.254996, 60.7944702, 64.238223, 

53.541036, 85.416874, 63.703904, 53.326564, 81.366124] 

}) 

 

# Fit the SARIMAX model 

model = SARIMAX(data['actual'], order=(3, 1, 3), seasonal_order=(1, 0, 2, 13)) 

results = model.fit() 

 

# Generate 30-step forecast 

forecast = results.get_forecast(steps=30) 

forecast_df = forecast.conf_int().join(forecast.predicted_mean) 

 

# Create a new DataFrame to store the actual, last value, and SARIMAX predictions 

future_data = pd.DataFrame({ 

    'actual': [np.nan] * 30, 

    'pred_last_value': [data['actual'].iloc[-1]] * 30, 

    'pred_SARIMAX': forecast_df['predicted_mean'] 

}) 

 

# Combine the original data and the future data 

all_data = pd.concat([data, future_data]) 
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print(all_data) 

 

from sklearn.metrics import mean_squared_error  

from sklearn.metrics import mean_absolute_error  

from sklearn.metrics import mean_absolute_percentage_error 

import numpy as np 

 

# Calculate MAPE 

pred_df['mape'] = np.abs((pred_df['actual'] - pred_df['pred_last_value']) / pred_df['actual']) * 100 

mape_last_value = pred_df['mape'].mean() 

 

pred_df['mape'] = np.abs((pred_df['actual'] - pred_df['pred_SARIMAX']) / pred_df['actual']) * 

100 

mape_SARIMAX = pred_df['mape'].mean() 

 

print(f'MAPE for last value prediction: {mape_last_value:.2f}%') 

print(f'MAPE for SARIMAX prediction: {mape_SARIMAX:.2f}%') 

 

# Calculate MSE 

mse_last_value = np.mean((pred_df['actual'] - pred_df['pred_last_value'])**2) 

mse_SARIMAX = np.mean((pred_df['actual'] - pred_df['pred_SARIMAX'])**2) 

 

print(f'MSE for last value prediction: {mse_last_value:.2f}') 

print(f'MSE for SARIMAX prediction: {mse_SARIMAX:.2f}') 

 

# Calculate MAE 

mae_last_value = np.mean(np.abs(pred_df['actual'] - pred_df['pred_last_value'])) 

mae_SARIMAX = np.mean(np.abs(pred_df['actual'] - pred_df['pred_SARIMAX'])) 

 

print(f'MAE for last value prediction: {mae_last_value:.2f}') 

print(f'MAE for SARIMAX prediction: {mae_SARIMAX:.2f}') 

 

import pandas as pd 

from statsmodels.tsa.statespace.sarimax import SARIMAX 

from tqdm import tqdm_notebook 

from itertools import product 

import numpy as np 

#Load the dataset 

df = pd.read_excel("C:\\Users\\hp\\documents\\malaria2015.xlsx") 

df.columns = df.columns.str.strip() 

# Handle infinite or missing values 

df.dropna(inplace=True) 

df.replace([np.inf, -np.inf], 0, inplace=True) 

 

#Prepare the dataset 
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target = df['weekly positive malaria cases'] 

exog = df[['weekly rainfall Received', 'average weekly max temp', 'average weekly min temp']] 

 

#Define the range of possible values for the orders p, q, P, and Q* 

p = range(0, 10, 6) 

d = 0 

q = range(0, 10, 6) 

P = range(0, 10, 6) 

D = 0 

Q = range(0, 10, 6) 

s = 13  # Since the data is collected weekly, s = 13 

 

#Generate a list of unique combinations of parameters 

parameters = product(p, q, P, Q) 

parameters_list = list(parameters) 

 

#Train the model using the first 400 instances 

target_train = target[:565] 

exog_train = exog[:565] 

 

def optimize_SARIMAX(endog, exog, order_list, d, D, s): 

    results = [] 

    for order in tqdm_notebook(order_list): 

        try: 

            model = SARIMAX( 

                endog, 

                exog, 

                order=(order[0], d, order[1]), 

                seasonal_order=(order[2], D, order[3], s), 

                simple_differencing=False 

            ).fit(disp=False) 

        except: 

            continue 

        aic = model.aic 

        results.append([order, aic]) 

    result_df = pd.DataFrame(results) 

    result_df.columns = ['(p,q,P,Q)', 'AIC'] 

    # Sort in ascending order, lower AIC is better 

    result_df = result_df.sort_values(by='AIC', ascending=True).reset_index(drop=True) 

    return result_df 

#Run the optimize_SARIMAX function and select the model with the lowest AIC 

result_df = optimize_SARIMAX(target_train, exog_train, parameters_list, d, D, s) 

print(result_df) 

 

import pandas as pd 

from statsmodels.tsa.statespace.sarimax import SARIMAX 
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from tqdm import tqdm_notebook 

from itertools import product 

import numpy as np 

model= SARIMAX(target_train, exog_train, order= (2, 0, 3), seasonal_order= (3, 0, 2, 13), 

simple_differencing= False) 

model_fit= model.fit(disp= False) 

print(model_fit.summary()) 

 

model_fit.plot_diagnostics(figsize=(10,8)) 

 

residuals = model_fit.resid 

lbvalue, pvalue = acorr_ljungbox(residuals, np.arange(1, 11, 1)) 

print(residuals) 

 

def rolling_forecast(endog: Union[pd.Series, list], exog:  

Union[pd.Series, list], train_len: int, horizon: int, window: int,  

method: str) -> list: 

    total_len = train_len + horizon 

    if method == 'last': 

        pred_last_value = [] 

        for i in range(train_len, total_len, window): 

            last_value = endog[:i].iloc[-1] 

            pred_last_value.extend(last_value for _ in range(window)) 

        return pred_last_value 

    elif method == 'SARIMAX': 

        pred_SARIMAX = [] 

        for i in range(train_len, total_len, window): 

            model = SARIMAX(endog[:i], exog[:i], order=(2,0,3),  

            seasonal_order=(1,0,1,13), simple_differencing=False) 

            res = model.fit(disp=False) 

            predictions = res.get_prediction(exog=exog) 

            oos_pred = predictions.predicted_mean.iloc[-window:] 

            pred_SARIMAX.extend(oos_pred) 

        return pred_SARIMAX 

    print(pred_SARIMAX) 

 

target_train = target[:561] 

target_test = target[561:] 

pred_df = pd.DataFrame({'actual': target_test}) 

 

TRAIN_LEN = len(target_train) 

HORIZON = len(target_test) 

WINDOW = 1 

 

pred_last_value = rolling_forecast(target, exog, TRAIN_LEN, HORIZON, WINDOW, 'last') 
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pred_SARIMAX = rolling_forecast(target, exog, TRAIN_LEN, HORIZON, WINDOW, 

'SARIMAX') 

 

pred_df['pred_last_value'] = pred_last_value 

pred_df['pred_SARIMAX'] = pred_SARIMAX 

 

print(pred_df) 

 

from sklearn.metrics import mean_squared_error  

from sklearn.metrics import mean_absolute_error  

from sklearn.metrics import mean_absolute_percentage_error 

import numpy as np 

 

# Calculate MAPE 

pred_df['mape'] = np.abs((pred_df['actual'] - pred_df['pred_last_value']) / pred_df['actual']) * 100 

mape_last_value = pred_df['mape'].mean() 

 

pred_df['mape'] = np.abs((pred_df['actual'] - pred_df['pred_SARIMAX']) / pred_df['actual']) * 

100 

mape_SARIMAX = pred_df['mape'].mean() 

 

print(f'MAPE for last value prediction: {mape_last_value:.2f}%') 

print(f'MAPE for SARIMAX prediction: {mape_SARIMAX:.2f}%') 

 

# Calculate MSE 

mse_last_value = np.mean((pred_df['actual'] - pred_df['pred_last_value'])**2) 

mse_SARIMAX = np.mean((pred_df['actual'] - pred_df['pred_SARIMAX'])**2) 

 

print(f'MSE for last value prediction: {mse_last_value:.2f}') 

print(f'MSE for SARIMAX prediction: {mse_SARIMAX:.2f}') 

 

# Calculate MAE 

mae_last_value = np.mean(np.abs(pred_df['actual'] - pred_df['pred_last_value'])) 

mae_SARIMAX = np.mean(np.abs(pred_df['actual'] - pred_df['pred_SARIMAX'])) 

 

print(f'MAE for last value prediction: {mae_last_value:.2f}') 

print(f'MAE for SARIMAX prediction: {mae_SARIMAX:.2f}') 

 

import numpy as np 

import pandas as pd 

from statsmodels.tsa.statespace.sarimaxSARIMAX import SARIMAX 

 

# Assuming you have the following data: 

data = pd.DataFrame({ 

    'actual': [2, 2, 0, 1, 1, 0, 2, 6, 5, 1, 1], 

    'pred_last_value': [2, 2, 2, 0, 1, 1, 0, 2, 6, 1, 1], 
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    'pred_SARIMAX': [-0.359775, 5.141341, 0.809185, 3.094283, -0.408399, 1.487610, 

0.263123, 0.629804, 3.257232, 6.751317, 4.032482] 

}) 

 

# Fit the SARIMAX model 

model = SARIMAX(data['actual'], order=(2, 0, 3), seasonal_order=(3, 0, 2, 13)) 

results = model.fit() 

 

# Generate 30-step forecast 

forecast = results.get_forecast(steps=30) 

forecast_df = forecast.conf_int().join(forecast.predicted_mean) 

 

# Create a new DataFrame to store the actual, last value, and SARIMAX predictions 

future_data = pd.DataFrame({ 

    'actual': [np.nan] * 30, 

    'pred_last_value': [data['actual'].iloc[-1]] * 30, 

    'pred_SARIMAX': forecast_df['predicted_mean'] 

}) 

 

# Combine the original data and the future data 

all_data = pd.concat([data, future_data]) 

 

print(all_data) 

 

import pandas as pd 

import numpy as np 

from sklearn.preprocessing import MinMaxScaler 

import tensorflow as tf 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import LSTM 

from tensorflow.keras.layers import Dense 

# Load the data 

lf = pd.read_excel("C:\\Users\\hp\\documents\\malaria2015.xlsx") 

lf['date']= pd.Timestamp('2013-01-01') + pd.to_timedelta(lf['week'].astype(str) + 'W') 

lf.set_index('date', inplace= True) 

# Strip whitespace from column names 

lf.columns = lf.columns.str.strip() 

print(lf) 

 

 

import numpy as np 

import pandas as pd 

from keras.models import Sequential 

from keras.layers import LSTM, Dense, Input, Dropout 

from keras.regularizers import l2 

from sklearn.preprocessing import StandardScaler 
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from sklearn.model_selection import train_test_split 

 

# Assuming you have the necessary data in a DataFrame 'lf' 

 

# Preprocess the data 

scaler = StandardScaler() 

X = lf[['weekly rainfall Received', 'average weekly max temp', 'average weekly min temp']] 

y = lf['weekly suspected malaria']  # weekly suspected malaria cases 

 

# Normalize the input and output variables 

X_scaled = scaler.fit_transform(X) 

y_scaled = scaler.fit_transform(y.values.reshape(-1, 1)) 

 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y_scaled, test_size=0.01, 

random_state=42) 

 

# Reshape the input data to include the exogenous factors 

X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1) 

X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], 1) 

 

# Train the model 

model = Sequential() 

model.add(Input(shape=(X_train.shape[1], 1))) 

model.add(LSTM(50, return_sequences=True, kernel_regularizer=l2(0.001), 

bias_regularizer=l2(0.001))) 

model.add(Dropout(0.2))  # Add dropout layer with a 20% dropout rate 

model.add(LSTM(50, kernel_regularizer=l2(0.001), bias_regularizer=l2(0.001))) 

model.add(Dropout(0.2))  # Add another dropout layer 

model.add(Dense(1)) 

model.compile(loss='mean_squared_error', optimizer='adam') 

history = model.fit(X_train, y_train, epochs=100, batch_size=3, validation_data=(X_test, 

y_test)) 

# Print the model summary 

model.summary() 

# Make predictions on the test data 

y_pred = model.predict(X_test) 

 

# Inverse scale the predicted values 

y_pred = scaler.inverse_transform(y_pred) 

y_test = scaler.inverse_transform(y_test) 

 

# Evaluate the model performance 

mse = np.mean((y_test - y_pred) ** 2) 

print(f"Mean Squared Error: {mse:.2f}") 
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# Forecast future values 

future_weeks = 30  # Number of future weeks to forecast 

future_data = X_test[-1].reshape(1, X_test.shape[1], 1)  # Use the last row of X_test as the initial 

input 

future_predictions = [] 

 

for _ in range(future_weeks): 

    future_prediction = model.predict(future_data) 

    future_prediction = np.clip(scaler.inverse_transform(future_prediction), 0, None)  # Clip 

negative values to 0 

    future_predictions.append(future_prediction[0][0]) 

 

    # Update the future_data with the predicted value 

    future_data = np.concatenate((future_data[:, 1:, :], future_prediction.reshape(1, 1, 1)), axis=1) 

 

# Print the forecasted weekly suspected malaria cases 

print("Forecasted Weekly Suspected Malaria Cases:") 

for i, prediction in enumerate(future_predictions): 

    print(f"Week {i+1}: {prediction:.2f}") 

 

# Plot the actual vs. forecasted values 

import matplotlib.pyplot as plt 

 

plt.figure(figsize=(20, 6)) 

plt.plot(range(len(y_test)), y_test, label='Actual') 

plt.plot(range(len(y_test)), y_pred, label='Forecasted') 

plt.plot(range(len(y_test), len(y_test) + future_weeks), future_predictions, label='Future 

Forecast') 

plt.xlabel('Time (Weeks)') 

plt.ylabel('Weekly Suspected Malaria Cases') 

plt.title('Actual vs. Forecasted Malaria Cases') 

plt.legend() 

plt.show() 

 

 

from sklearn.metrics import mean_squared_error  

from sklearn.metrics import mean_absolute_error  

from sklearn.metrics import mean_absolute_percentage_error 

import numpy as np 

# Evaluate the model on the testing data 

loss = model.evaluate(X_test, y_test) 

print(f'Test loss: {loss}') 

 

# Make predictions on the testing data 

y_pred = model.predict(X_test) 
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# Evaluate the predictions using various metrics 

mse = mean_squared_error(y_test, y_pred) 

mae = mean_absolute_error(y_test, y_pred) 

mape = mean_absolute_percentage_error(y_test, y_pred) 

 

print(f'MSE: {mse}') 

print(f'MAE: {mae}') 

print(f'MAPE: {mape}') 

 

import matplotlib.pyplot as plt 

plt.plot(history.history['loss'], label='Training Loss') 

plt.plot(history.history['val_loss'], label='Validation Loss') 

plt.legend() 

 

 

 

 

import numpy as np 

import pandas as pd 

from keras.models import Sequential 

from keras.layers import LSTM, Dense, Input 

from sklearn.preprocessing import StandardScaler 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import mean_squared_error, mean_absolute_error, 

mean_absolute_percentage_error 

 

# Assuming you have the necessary data in a DataFrame 'lf' 

 

# Preprocess the data 

scaler = StandardScaler() 

X = lf[['weekly rainfall Received', 'average weekly max temp', 'average weekly min temp']] 

y = lf['weekly positive malaria cases']  # weekly positive malaria cases 

 

# Normalize the input and output variables 

X_scaled = scaler.fit_transform(X) 

y_scaled = scaler.fit_transform(y.values.reshape(-1, 1)) 

 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y_scaled, test_size=0.01, 

random_state=42) 

 

# Reshape the input data to include the exogenous factors 

X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1) 

X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], 1) 

 

# Train the model 
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model = Sequential() 

model.add(Input(shape=(X_train.shape[1], 1))) 

model.add(LSTM(10)) 

model.add(Dense(1)) 

model.compile(loss='mean_squared_error', optimizer='adam') 

history = model.fit(X_train, y_train, epochs=10, batch_size=5, validation_data=(X_test, y_test)) 

model.summary() 

 

# Make predictions on the test data 

y_pred = model.predict(X_test) 

 

# Inverse scale the predicted values 

y_pred = np.clip(scaler.inverse_transform(y_pred), 0, None)  # Clip negative values to 0 

y_test = scaler.inverse_transform(y_test) 

 

# Evaluate the model performance 

mse = np.mean((y_test - y_pred) ** 2) 

print(f"Mean Squared Error: {mse:.2f}") 

 

# Forecast future values 

future_weeks = 30  # Number of future weeks to forecast 

future_data = X_test[-1].reshape(1, X_test.shape[1], 1)  # Use the last row of X_test as the initial 

input 

future_predictions = [] 

 

for _ in range(future_weeks): 

    future_prediction = model.predict(future_data) 

    future_prediction = np.clip(scaler.inverse_transform(future_prediction), 0, None)  # Clip 

negative values to 0 

    future_predictions.append(future_prediction[0][0]) 

    print(f"Forecasted weekly positive malaria cases for week {_ + 1}: 

{future_prediction[0][0]:.2f}") 

 

    # Update the future_data with the predicted value 

    future_data = np.concatenate((future_data[:, 1:, :], future_prediction.reshape(1, 1, 1)), axis=1) 

 

# Plot the actual vs. forecasted values 

import matplotlib.pyplot as plt 

 

plt.figure(figsize=(8, 6)) 

plt.plot(range(len(y_test)), y_test, label='Actual') 

plt.plot(range(len(y_test)), y_pred, label='Forecasted') 

plt.plot(range(len(y_test), len(y_test) + future_weeks), future_predictions, label='Future 

Forecast') 

plt.xlabel('Time (Weeks)') 

plt.ylabel('Weekly positive malaria cases') 
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plt.title('Actual vs. Forecasted Malaria Cases') 

plt.legend() 

plt.show() 

 

# Evaluate the predictions using various metrics 

mse = mean_squared_error(y_test, y_pred) 

mae = mean_absolute_error(y_test, y_pred) 

mape = mean_absolute_percentage_error(y_test, y_pred) 

 

print(f'MSE: {mse}') 

print(f'MAE: {mae}') 

print(f'MAPE: {mape}') 

 

plt.figure(figsize=(12, 6)) 

plt.plot(history.history['loss'], label='Training Loss') 

plt.plot(history.history['val_loss'], label='Validation Loss') 

plt.xlabel('Epoch') 

plt.ylabel('Loss') 

plt.title('Training and Validation Loss') 

plt.legend() 

plt.show() 
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APPENDIX 2 

 
Figure 38 City of Harare approval form 


