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ABSTRACT 

This study is a comprehensive time series analysis of yearly motor vehicle accidents in Zimbabwe 

from 1993 to 2023, comparing the performance of Multilayer Perceptron model (MLP) and the 

Autoregressive Integrated Moving Average (ARIMA). The aim was to identify the most accurate 

and reliable modelling approach for forecasting number of motor vehicle accidents in Zimbabwe. 

A quantitative research design for 31 data points of yearly motor vehicle accidents was employed 

in the study and the R-Software was used to perform data analysis. ARIMA model was developed 

using the Box-Jenkins model building strategy. The Augmented Dickey Fuller test revealed that 

the accident data was non-stationary. After first order differencing, the data became stationary. 

The model with the smallest corrected Akaike Information Criteria (AICc) and Bayesian 

Information Criteria (BIC) was chosen as the best model which is the ARIMA (1,0,0) model. The 

best-performing MLP model among the three that were created was 1-(10,5)-1. The performance 

evaluation metrics were used to compare the models against observed data from 2017 to 2023. 

Mean Absolute Error and Root Mean Square Error, were used as performance evaluation metrics. 

This study's conclusions indicate that MLP out performed ARIMA model and it was used for 

forecasting number of future accidents for the next 5 years. Future projections indicate a downward 

trend in the number of motor accidents. Even if the trend in future accidents was decreasing there 

is still a need to exercise more caution so as to reduce the occurrence of accidents related to road 

traffic crashes. 
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CHAPTER 1: INTRODUCTION 

1.0 Introduction 

This chapter lays the foundation for the research study. Using Artificial Neural Networks and 

Autoregressive Integrated Moving Averages with historical time series data collected as a 

comparison, it seeks to predict the future occurrence of road traffic accidents in Zimbabwe. The 

best fitting model for the accident data from 1993 to 2023 is found by comparing the time series 

models. The chapter therefore outlines the background of the study, research problem, objectives, 

research questions, significance of the study, assumptions of the study, potential limitations and 

implications for different stakeholders who may be interested in the findings. 

 

1.1 Background of the Study 

Motor vehicle accidents have profound implications for public safety and societies worldwide. 

Every year, approximately 1.35 million people die on the world’s roads as a result of road traffic 

crashes, which is one of the leading causes of death globally with an additional 20-50 million non-

fatal injuries resulting in long term disabilities (WHO, 2020). More than half of all road traffic 

deaths occur among vulnerable road users like pedestrians, cyclists and motorcyclists (WHO, 

2018). Negesa & Dessie (2017) coined that road traffic accidents are a major cause of injury and 

death worldwide, as well as a public health problem. Global statistics shows that the most affected 

age group is between 15-44. Kuikel et al (2022), accounted that road traffic collisions are the eighth 

largest cause of death for all ages around the world.  

The impact of motor vehicle accidents is disproportionately felt in low- and middle-income 

countries which account for 93% of global road fatalities despite having only 60 % of the world’s 

motor vehicles (WHO, 2018). The economic burden of motor vehicle accidents is substantial with 

an estimated annual cost of 2.5trillion worldwide. Globally, the economic impact of traffic 

collisions is staggering with the costs associated with medical expenses, productivity loss and 

property damage estimated to be around 3% of the world’s gross domestic product (GDP). In low- 

and middle-income countries these costs can be high as 5% of GDP, further straining already 

limited resources.      

The African continent, home to approximately 16% of world’s population, bears disproportionate 

share the global burden of road traffic fatalities. Africa has the highest rate of road traffic fatalities 
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globally. World Health Organisation estimated 26.6 deaths per 100000 population in Africa as 

compared to an average of 17.4 deaths per 100000 globally. WHO (2020), reported the severance 

of road accidents in developing countries where millions are lost and properties are damaged. 

Vehicle safety standards in many African countries is often lacking. The prevalence of older poorly 

maintained vehicles on the roads increases the risk of accidents and their severity. Urbanisation 

has led to increased number motor vehicles and traffic congestion, often outpacing infrastructure 

developments.      

Zimbabwe is a landlocked country and road transport is widely used. Zimbabwe's population has 

grown significantly over the last few decades, and the country has become more motorised and 

urbanised, which has increased the number of vehicles on its roads. The total number of accidents 

in Zimbabwe increased significantly between 2009 and 2010, rising by 61.2% from 20553 in 2009 

to 26841 in 2010 (Mutangi, 2015). Similarly, the number of deaths from road accidents increased 

between 2009 and 2010 by 7.3%, and the trend continued in 2011, with a 12.8% increase from 

2010 to 2011 (Mutangi, 2015). Mutangi (2015) also proposed that the increase in the number of 

motor vehicles in Zimbabwe from 2009 originated from the economy's dollarization and this has 

made it easier for individuals to acquire vehicles. This surge in motor vehicles has been 

accompanied by an alarming increase in the occurrence of road accidents, posing a serious threat 

to public safety and necessitating a comprehensive analysis of the underlying patterns and trends. 

Zimbabwe National Road Traffic Accident Database reports that, the number of motor vehicle 

accidents in Zimbabwe has increased over the previous few decades. This disturbing trend 

underlines the urgent need for the development of a predictive model to forecast the frequency of 

traffic accidents and devise appropriate mitigation techniques. The results of the study added to 

the current body of information on road safety in Zimbabwe, providing evidence-based insights 

for policymakers, transportation authorities, and law enforcement organizations. 

1.2 Statement of the Problem 

Motor vehicle accidents have emerged as a significant public health and safety concern 

contributing to a substantial number of fatalities, injuries and economic losses. It is prudent that 

the concerned authorities like TSCZ know the future accidents for planning, budgeting and 

healthcare improvement purposes. The concerned department is not aware of the trend in future 

accident. This uncertainty makes it difficult for them to plan in terms of research allocations. This 
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research therefore proposes a forecasting model which allows the concerned authorities to 

anticipate the direction of accidents and hence use that information for planning purposes. The 

purpose of this study is to compare the performance of ARIMA (Autoregressive Integrated Moving 

Average) and Artificial Neural Networks (ANN), in evaluating and forecasting motor vehicle 

accidents in Zimbabwe from 1993 to 2023. The aim is to determine the best model in capturing 

and identifying motor vehicle accidents.  

1.3 Objectives of the Study 

Ultimately, the study aims to perform a time series analysis of Zimbabwe motor vehicle accidents 

using data from 1993 to 2023. 

The specific objectives are as follows: 

1. To analyse the temporal patterns and trends of motor vehicle accidents in Zimbabwe over 

the period 1993 to 2023. 

2. To fit ANN and ARIMA models to the data. 

3. To compare the performance of the ARIMA and ANN models based on various evaluation 

metrics 

4. To forecast future accidents from 2024 to 2028 using the best performing model. 

1.4 Research Question 

1. What are the temporal patterns and trends of motor vehicle accidents in Zimbabwe from 

1993 to 2023? 

2. Can ARIMA and ANN models accurately fit the accident data? 

3. How well does the neural network approach compare with ARIMA approach? 

4. Can future accidents be forecasted over the study period? 

1.5 Scope of the Study / Delimitation of the Study 

The study examined how well the ARIMA and ANN models performed on modelling Zimbabwe’s 

Road accidents from 1993 to 2023. It specifically examined traffic collisions within the context of 

Zimbabwe. The study collected historical accident data from Traffic Safety Council of Zimbabwe, 

covering a substantial time span for analysis. It was only limited to one variable which is, the 

number motor vehicle accidents.  
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1.6 Significance of the Study 

The study is significant in terms of informing evidence-based decision making, developing 

predictive models, and contributing to the knowledge base. The study holds immense potential to 

facilitate targeted interventions and policies by informing accident rates, improve crash prevention, 

and ultimately save lives in Zimbabwe.  

1.7 Assumptions of the Study 

1. The mean and variance of the time series data are stationary, which means they do not vary 

over time. 

2. The data is not affected by autocorrelation meaning that the data points are not correlated.  

1.8 Limitations of the Study 

 This study was on time series analysis of motor vehicle accidents in Zimbabwe from 1993 to 2023 

and had limitations that were considered. It only focused on the time series data and neglected 

other factors that can cause motor accidents. The findings cannot be generalized beyond Zimbabwe 

due to its unique characteristics. The study only compared ARIMA and ANN models and did not 

consider other forecasting models.  

1.10 Definition of Terms 

Time series 

A time series is a collection of data points gathered over time with the intention of identifying 

and interpreting trends and patterns (Brockwell & Davis, 2016). 

Road Traffic Accident  

Any event where at least one motor vehicle is involved and the public has the right of access to a 

private or public road and at least one person is hurt or killed is considered a road traffic accident 

(WHO, 2018). 

Artificial Neural Networks 

Russell and Norvig (2016), defined it as a computational model composed of interconnected nodes, 

known as artificial neurons or nodes inspired by the biological neural networks in the human brain. 

Forecasting 
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Is a process of making predictions about the future trends based on historical data (Makridakis et 

al, 2018). 

Forecasts 

 Forecasts refers to predictions or estimates of future events, trends or values based on historical 

data, analysis, and modelling (Hyndman and Anthanasopoulos, 2018).  

 

1.11 Chapter Summary 

This chapter introduced a topic of the study, highlighted its background, objectives, problem 

statement, limitations and delimitation associated with the study. The subsequent chapter, which 

reviews theoretical and empirical literature focusing on the ARIMA and ANN approaches, was 

made possible by the work that preceded it. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.0 Introduction 

In this section, the researcher gives details of theoretical literature, empirical evidence and the 

research gap related to motor vehicle accidents in Zimbabwe from 1993 to 2023. Additionally, a 

proposed conceptual model was presented to guide the analysis and interpretation of the data. 

2.1 Theoretical literature 

  Road traffic accidents 

 Motor vehicle accidents are a complex phenomenon influenced by various factors such as driver 

behaviour, road conditions, vehicle characteristics, and socioeconomic factors. Time series 

analysis techniques offer a valuable framework for comprehending trends in motor vehicle 

accidents, enabling accurate forecasting.  

Theories associated with the occurrence of motor vehicle accidents 

Risk Perception Theory 

Slovic et al. (1988), suggested that individuals' subjective perception of risk influences their 

behaviour. They went on suggesting that drivers' perception of the likelihood and severity of 

accidents affects their driving decisions and adherence to safety regulations. It has been observed 

that personal experience, familiarity with the road environment, and perceived control influence 

risk perception and subsequently driver behaviour. 

Theory of Planned Behaviour: 

Ajzen (1991), described how attitudes, subjective norms and perceived behavioural control form 

basis of the theory. It suggested that individual attitudes toward risky driving behaviours, 

subjective norms influenced by social factors, and perceived control over driving behaviour play 

a significant role in predicting driver actions. He also argued that people’s attitudes influence their 

intention to perform the behaviour as summarized in Figure 2.1 below. 
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Figure 2.1: Theory of Planned Behaviour 

2.1.1 Time series analysis 

Brockwell & Davis (2016), defined time series as a sequence of data points measured at regular 

time intervals. These observations can be represented as 𝑋1,𝑋2, 𝑋3 … 𝑋𝑡  where t denotes the time 

period and 𝑋 represents the corresponding value. Similarly, Ramasubramanian (2015) describes a 

series of data points recoded over time arranged chronologically. Univariate time series have 

records for a single variable. They can be discrete or continuous, with four components which are 

trend(T), seasonal variations(S), cyclical variations(C), and irregular variations(I). 

2.1.2 Components of Time Series 

The above components can be represented by the equation, 𝑌 = 𝑆 × 𝐶 × 𝐼 × 𝑇   where y is time 

series (Hyndman & Athanasopoulos, 2018). 

The Trend 

Stock and Watson, (2018) defined a trend as the long-term component of a time series that captures 

the gradual, persistent, and predictable changes in the data point. A trend can either be upward or 

downward and can be influenced by factors like population growth, price fluctuations, and 

economic changes. 

Seasonality 

Seasonality in time series refers to recurring patterns with consistent timing, direction, and 

magnitude, influenced by seasonal fluctuations, calendar changes, weather variations, business 

cycles, and cultural traditions (Brockwell & Davis, 2016). 

Irregular (Unsystematic) 
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An unsystematic component is caused by random shocks like wars, strikes, earthquakes, floods, 

and revolutions, lacking a defined statistical technique for measurement. Figure 2.2 shows aspects 

of time series (Brockwell & Davis, 2016).   

 

Figure 2.1.2: Components of Time Series 

2.1.3 Assumptions of Time Series Analysis 

 

Stationarity 

Any sequence with mean and variance which are constant is considered to be stationary. (Hyndman 

& Athanasopoulos, 2018). Stationarity exists in three forms which are strict, weak and second-

order stationarity. Strict stationarity implies that all moments and joint distribution of the series 

remain constants. Augmented Dickey-Fuller test is used to determine the stationarity of any given 

time series data. It is a popular choice for analysing the stationarity of a series. If the p-value from 

an Augmented Dickey-Fuller test is greater than the level of significance (alpha value), we reject 

the null hypothesis (H0) and take appropriate measures to address non-stationarity 

(Ramasubramanian, 2015). 

   Independence 

Autocorrelation must not exist, and residuals must be independent. To determine if the residuals 

have positive autocorrelation, apply the Durbin-Watson test. Plotting residuals against the fitted 

values is another technique that is suggested. The plot should be unstructured if the model is 

accurate. Partial auto corelation function (PACF)  and auto-corelation function (ACF) plots are 

also used to test for (Mapuwei et al, 2022). 
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Normality 

 Residuals data should follow a normal distribution. Normality can be assessed through the use of 

density plot or histogram, box plots, percent-percent (P-P) plots, quantile-quantile (Q-Q) plots, 

Shapiro-Wilk test and the Kolmogorov-Smirnov test. The Shapiro-Wilk test is a commonly used 

test that assesses the hypothesis that the data are from a normal distribution (Mapuwei et al, 2022. 

Homoskedasticity 

 Plotting the residuals scatter plot demonstrates that the residual’s variance remains consistent, 

with a rectangular shape enveloping zero horizontal levels and no discernible trends (Mapuwei et 

al, 2022). 

2.1.4 Models in Time Series Analysis 

Autoregressive (AR) Model  

A sequence is said to be autoregressive if its current value is affected by previous values plus a 

random shock (Da Hye et al, 2021). Thus                

                 𝑌𝑡 = 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + ⋯ + 𝜙𝑝𝑌𝑡−𝑝 + 𝑎𝑡 …………………………. (2.1) 

              where  𝑌𝑡– Current Value,  𝑌𝑡−𝑝  – a value at lag p 

                𝑎𝑡    – White noise error  

                 𝜙1, 𝜙2 … 𝜙𝑝– Parameter of the model which is estimated from the data.  

 Moving Averages (MA) Model 

A moving average model make use of error lags in a forecasting process. Schaffer et al, (2021) 

discovered that there is a large surge in the ACF. Order q of MA model is established based on the 

number of ACF significant spikes, and PACF decreases sequentially. This model, the subsequent 

event is determined as the average of the previous event, considering the short-term autocorrelation 

of the time series. ACF plots are used to estimate the order q of a model. The formula for the MA 

(q) model can be expressed as follows: 

                   𝑌𝑡 = 𝑎𝑡 + 𝜃1𝑎𝑡−1 + 𝜃2𝑎𝑡−2 + ⋯ + 𝜃𝑞𝑎𝑡−𝑞 ……………………….. (2.2) 

With 𝑎𝑡 as the white noise and 𝑎𝑡−𝑞 as the white noise at lag q 
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Autoregressive Moving Averages (ARMA) Model 

A combination of AR and MA gives us the ARMA model. When an equation of first-order 

autoregressive (AR) model reaches the initial point, it leads to an infinite moving average. To 

utilize the ARMA model effectively, we determine p and q values. The value of p corresponds to 

significant terms in the autocorrelation function (ACF), while q represents the number of 

significant terms in the partial autocorrelation function (PACF). If a time series conforms to an 

ARMA (p, q) model, it is considered to exist (Box, Jenkins, Reinsel, & Ljung, 2015). 

                    𝑌𝑡 = 𝛿 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 … + 𝜙𝑞𝜀𝑡−𝑞………………………….   (2.3) 

Where 𝜀𝑡 is the white noise process. 

Seasonal Autoregressive Integrated Moving Average (SARIMA) Model 

A SARIMA model is applicable to both periodic and non-periodic data. It utilizes the appropriate 

order of seasonal fluctuation to make the series stationary. The model is defined as follows 

(1 − 𝜙1Β)(1 − 𝜙1Β4)(1 − Β)(1 − Β4)𝑦𝑡 = (1 + 𝜙1Β)(1 + 𝜙1Β4)𝜀𝑡……… (2.4) 

B backshift operator with ‘4’ the seasonal lag (Ramasubramanian, 2015) 

2.1.5 Forecasting Approaches 

2.1.5.1 Box-Jenkins Data Analysis Procedures (ARIMA) 

An ARIMA model is formed from Autoregressive Moving Averages. The first step is to make the 

dataset stationary (Mboso, 2022).  It is an iterative process involving four phases which are model 

identification, estimation, diagnostic checking, and time series forecasting. The main goal is to 

find the most parsimonious model from a broad range of ARIMA models. An iterative process is 

repeated multiple times until a satisfactory model is ultimately chosen. The time series' future 

values can then be predicted using this model, as stated by Khan & Alghulaiakh (2020). This 

provides a general framework for describing the ARIMA model. 

                                                ϕ (𝐵) 𝑍𝑡 = Θ (𝐵) 𝑎t ………………………………...  (2.5) 

where 𝑍𝑡 is the variable being modelled, the unknown model parameter ϕ and Θ for a white noise 

process are estimated using the method of estimation which either least-squares or maximum 

likelihood, and the backward difference operator 𝐵 is also employed.  
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2.1.5.2 Artificial Neural Networks 

The concept of ANN is based on the real biological systems found in human brains, as explained 

by Schmidhuber (2015). Neurophysiology and cognitive theory are the two branches of brain 

science that inform neural network techniques. ANNs consist of connection patterns, neuron 

number, the learning algorithm and the activation function.  

Artificial Neural Networks Architecture 

Erguzel, et al., (2019) classified ANN as a semiparametric method. Complex functions are produced 

when a large group of neurons are connected in a suitable way. Signals are sent and received by the 

neurons from one another. The neurons are simple processors of information, and generally 

observe signals that other neurons are sending along the connections. 

 

Figure 2.1.5: Multilayer Perceptron Architecture 

Figure 2.2 above is a multilayer perceptron which is basically a model created from feedforward 

neural networks (FNN). The architecture above shows a model structure of 1-(4,2)-1. It has one 

input layer, two hidden layers with four and two neurons respectively and one output layer. The 
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first layer involves M linear combinations of the d-dimensional inputs as summarized in the 

general equation below: 

𝑏𝑗 = ∑ 𝑤(1)
𝑗𝑖𝑥𝑖 ,              𝑗=1,2,   .  .  .  𝑀             

𝐷

𝑖=0

… … … … … … … … … … … … … (2.6) 

Where 𝑤𝑗𝑖 are weights and the quantities 𝑏𝑗 are the activations. Each of the activations is then 

transformed by a nonlinear activation function g, typically a sigmoid: 

𝑧𝑗 = ℎ(𝑏𝑗) =
1

1 + 𝑒𝑥𝑝(−𝑏𝑗)
… … … … … … … … … … … … … … … (2.7) 

However, in a multiclass problem, a softmax action function is used and it can be generalized as 

follows                                         

ℎ(𝑏𝑗) =
𝑒𝑥𝑝(𝑏𝑗)

∑ 𝑒𝑥𝑝(𝑏𝑗)𝑘
𝑡=1

… … … … … … … … … … … … … … … … … (2.8) 

Then by so doing we can arrive at the general equation for MLP and it can be written as follows 

𝑦𝑘 = ℎ (∑ 𝑤(2)
𝑘𝑗

𝑀

𝑗=0

𝑏 (∑ 𝑤(1)
𝑗𝑖

𝐷

𝑖=0

𝑥𝑖)) … … … … … … … … … . . (2.9) 

Where subscript (1) and (2) represents first and second layers. Alternatively, the following MLP 

equation can be used. 

𝑦 = 𝑓𝑠 [∑ 𝑤0
1𝑘 (𝑓 ∑ 𝑤𝑖

𝑘𝑛

𝑁

𝑛=0

𝑢𝑛 + 𝑏𝑛)

𝐾

𝑘=0

] … … … … … … … . . … (2.10) 

Where the network inputs 𝑢𝑛 are the bias of the network 𝑏𝑛, 𝑓 is the activation function of the 

intermediate layers, and 𝑓𝑠 is the activation function in the output layer, y is the output signal, 

𝑤𝑖
𝑘𝑛 is the weight of the intermediate layer and 𝑤0

1𝑘 is the connection of the output neurons 

(Qureshi et al, 2022). 

 MLP Training: Back-propagation of Error  
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The process of training a neural network model using the gradient descent starting from output 

layer can be referred to as backpropagation. This stage involves the idea of chain rule 

differentiation method when defining error function E and evaluating the derivatives 𝜕𝐸
𝜕𝑤(2)

𝑘𝑗
⁄  

and 𝜕𝐸
𝜕𝑤(1)

𝑘𝑗
⁄  . Through a training process, the error gradients are the product of the derivative 

of the error at the output of the weights and the value at the input to the weight (Shimodaira, 2015). 

Calculations of the gradient backward should be done independently and recomputing of the 

weights should be attached between each node. Weights are optimized so as to accurately plot 

arbitrary inputs to output. 

2.1.6 Other Neural Network Models 

Long Short-term Memory (LSTM) 

The LSTM is a class of recurrent neural networks (RNN). It is a dynamic system with temporal 

states (Du and Swamy, 2014). Rehan, Swarna and Dipayan (2020) described the movement of data 

in RNNs. The data travels in a way that, at each node, the network learns from both the current 

and previous inputs, and is therefore able to share the weights over time. 

Time lagged Neural Networks (TLNN)  

It is a network in which temporal dependence in time series data is captured by supplying the 

network with present value of the input, 𝑥𝑡 in addition to p past values of the input 𝑥𝑡−1, 𝑥𝑡−2 

… 𝑥𝑡−𝑝 . The relationship between output 𝑦𝑡and the input is assumed to be of the form 𝑦𝑡 =

𝑓(𝑥𝑡, 𝑥𝑡−1, 𝑥𝑡−2 … , 𝑥𝑡−𝑝) + 𝑒𝑡  where 𝑒𝑡 is a zero mean Gaussian variable with variance and 𝑓(. ) 

is a non-linear function in its arguments (Kihoro et al, 2004). 

2.2 Empirical Literature 

Mutangi (2015), utilized the Box-Jenkins ARIMA method to model yearly road accident in 

Zimbabwe from 1997 to 2013 and forecasted up to 2018. The time series data was not stationary 

and differenced once to make it stationary. Three ARIMA models that were proposed by the study 

are ARIMA (0,1,0), ARIMA (1,1,0), and ARIMA (1,1,1) based on the ACF and PACF plots of 

the differenced series. The model with the lowest values was chosen as the best fit, based on a 

comparison of AICc and BIC values. From the three models tested, ARIMA (0,1,0) was found to 

be the most appropriate in analysing Zimbabwe Road accidents. The forecasting process retained 
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the value at the forecast origin. However, Mutangi did not do a comparative study of ANN and 

ARIMA.  

Wannuraw et al (2023), conducted a comparative analysis of SARIMA and ANN in modelling 

Selangor Road traffic from January 2011 up to December 2021. The study’s aim was to forecast 

monthly road accident occurrences on federal and state roads in Selangor, Malaysia. The 

traditional univariate SARIMA and ANN models were employed and their performances were 

assessed. The results showed that ANN model outperformed the SARIMA model in both training 

and validation sets. This study demonstrated the ability of neural networks in forecasting road 

accidents, giving more flexibility and assumption-free methodology. 

In their study conducted in 2021 Lind and Ridhagen compared ANN and AR baseline using M4 

competition dataset. Twenty (20) observations were drawn from the sample and the two models 

were employed on the data set. The ANN models performed much better than the Autoregressive 

baseline giving lower values of performance evaluation metrics.  

A separate study by Emenike and Kanu in 2017, investigated the relationship between distracted 

driving and road traffic collisions specifically in Port Harcourt. The study found that the use of 

mobile phones or gadgets by commercial drivers contributed to the majority of accidents.  

West Arsi (2023), wrote their research paper on road traffic accidents in Ethiopia. The research 

used monthly data from January 2016 to December 2020. Statistical packages and Box-Jenkins 

approach were used in the data analysis. After applying first-order differencing to the data, a (2, 1, 

3) model was the best model for the data. The model was then used for forecasting.  

2.3 Research Gap 

The research gap lies in the application of time series analysis to motor vehicle accidents in 

Zimbabwe from 1993 to 2023. Existing studies have primarily focused on the ARIMA model while 

neglecting the use of ANN. The gap arises from the need for a comparative analysis to evaluate 

the effectiveness of ANN as a complementary method for complex accident data. Furthermore, 

there is limited research specific to the Zimbabwean context, where accident dynamics may differ. 

Comparing the performance of ARIMA and ANN models would provide insights into their 

strengths and limitations in terms of accuracy, forecasting capabilities, interpretability, and 

computational efficiency. 
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2.4 Proposed Conceptual Model 

 Figure 2.4 is a proposed conceptual model of the study. The diagram shows elements associated 

with traffic crash and injuries. Travel behaviour and crash risk are the two fundamental theories 

which results in road accidents. Figure 2.5 show the flow chat depicting ARIMA and ANN 

methodologies used in this study. It shows stages followed when developing ARIMA and ANN as 

well as their comparison. The Figure also indicates performance metrics that were used for 

comparison of the two time series models. 

 

Figure 2.4.1 Proposed Conceptual Model 
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Figure 2.4.2: Model building and selection procedure. 

 

2.5 Chapter Summary  

In conclusion, the chapter reviewed the theoretical and empirical literature on motor vehicle 

accidents. The research gap in terms of time series analysis was identified and a proposed 

conceptual model was presented to guide the analysis and interpretation of the data. The research 

methodology and data collection techniques will be discussed in the next chapter. 
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CHAPTER 3: RESEARCH METHODOLOGY 

 

3.0 Introduction 

Strategies employed in achieving the study's goals are the main topics of this chapter. This 

methodology serves as a framework for the tactics employed in this study in addition to research 

methods. It highlights the research design, methods for data collection, sampling techniques, 

targeted population and data sources for the study. The methodology leads and navigates how this 

study was carried.   

3.1 Research Design 

A quantitative research design was employed in this study. The researcher selected predictive 

research design, which is a quantitative research technique that makes predictions about future 

events based on past data. It is a crucial instrument for investigators as it furnishes directives for 

carrying out the investigation and delineates the strategy for collecting, quantifying, and 

interpreting data. Quantitative research involves gathering and interpretation of numerical data to 

establish relationships and make generalizations. This study focused on one variable which is the 

number of accidents (𝑌𝑡) at time 𝑡 .The used quantitative research design is crucial because it 

permits systematic and rigorous data collection and analysis, offers a framework for testing 

hypotheses and drawing conclusions from the data, and permits results to be replicated by other 

researchers and compared across studies. 

3.2 Data Sources and Data Collection 

The Zimbabwe Traffic Safety Department, which keeps track of car accidents in the nation, is the 

study's main source of data. ZIMSTAT and Zimbabwe Parliamentary report of the Portfolio 

Committee on Transport and Infrastructure Development on The Causes of Road Carnage are the 

alternative data sources. The Traffic Safety Council of Zimbabwe’ (TSCZ) secondary data for all 

recorded motor vehicle accidents from 1993 to 2023 was used in the study. 

Justification of Data Source: Secondary Data (TSCZ) 

 Since TSCZ is an established government body tasked with maintaining road safety in Zimbabwe, 

the data was gathered from them as they have the authority and experience to collect data that is 

authentic and trustworthy. Secondary data was chosen because it saves time and easy to access as 
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compared to primary data. So as a result, the researcher just downloaded the data from TSCZ 

website. However, secondary data may be outdated or incomplete. 

3.3 Targeted Population and Sampling Procedures 

The study included all motor vehicle accidents that occurred in Zimbabwe from 1993 to 2023. 

This study's sample size was 31 yearly data points. The study applied purposive sampling 

technique due to its ability in identifying long-term trends and patterns of motor vehicle accidents 

(trend analysis).  

3.4 Research instruments  

Methods or instruments are created to collect and analyse data as part of the research process. In 

this study a laptop was used to download motor vehicle accidents data from 1993 to 2023 from the 

TSCZ website. Quantitative research instruments such as Microsoft packages (excel) to input and 

view data and R-Programming 4.3.2 for the analysis and creating graphs of collected data were 

used. 

3.5 Description of Variables and Expected Relationships  

WHO (2018), defined road traffic accidents as an event or occurrence that involves at least one 

moving road vehicle. It can be described as an unanticipated incident of a car crash that has the 

potential to cause injuries, fatalities, and property damage. The following symbols and their 

meaning for easy data analysis were used. 

Table 3.5: Description of variables and expected relationships 

Variable Variable symbol Expected relationship 

The number of motor vehicle 

accidents at time t 

              𝑌𝑡 It was expected that 𝑌𝑡 has a positive 

relation with the occurrence of 

motor accidents at time 𝑡.  

  As proposed by Mutangi (2015). 

 

3.6 Data Analysis Procedures 

Data cleaning is an essential stage of data analysis as it seeks to organize unorganized data. 

Wickham (2014) defined a tidy dataset as a dataset that contains characteristics like, each 

observation comprises of a row, a variable from the column and an observational unit produces a 



19 | P a g e  
 

table. The accidents data was presented in a tabular format with each observation arranged in rows 

and columns. The data was cleaned and duplicate records were eliminated hence making the data 

ready for analysis. The cleaning process was done through the following stages, data importation, 

merging data sets, rebuilding missing data, deduplication, verification and data enrichment. After 

data preparation, the Box-Jenkins methodology was applied to the data. The model was identified, 

selected and parameters were estimated. Model diagnosis was done as well as forecasting. On 

Neural Network methodology, the processed data was normalised, split into training and testing 

sets and model was identified (architecture of a model). The model was trained, selected and used 

for forecasting. The models were then compared based on performance metrics.  

3.7 The Box Jenkins Methodology 

It is a systematic approach to finding, evaluating and using the ARIMA model. This model 

performs better for a minimum of thirty observations. Steps required to complete ARIMA model 

include model recognition, parameter calculation and diagnostic checking. This was done in order 

to determine model adequacy based on historical data analysis (Montgomery, Jennings, and 

Kulahci, 2015). 

3.7.2 Model Identification.  

The model was first checked for stationarity using a run sequence plot. Time series data in a run 

sequence display should be consistent. Box and Jenkins recommended a differencing process to 

render non-stationary data into stationary. The model was identified through the use of PACF and 

ACF plots. A function in R programming called auto-Arima automatically chose the best among 

a collection of ARIMA models. After that, the Akaike information criterion with a correction 

(AICc) and the maximum likelihood function were to look for the optimal ARIMA model. 

Autocorrelation function (ACF) can be calculated using the formular below 

𝑃𝑘 =
𝑌𝑘

𝑌0
⁄ =

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑎𝑡 𝑙𝑎𝑔 𝑘

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
………………………………….. (3.1) 

PACF is calculated by the formular below 

𝜑𝑘𝑘 = 𝐶𝑜𝑟𝑟(𝑌𝑡, 𝑌𝑡−𝑘|𝑌𝑡−1, 𝑌𝑡−2, … 𝑌𝑡−𝑘+1. ……………………………. (3.2) 

Differencing 
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Converting a nonstationary series into stationary known as differencing. The researcher 

differenced data once to make it stationary.  The process of taking sequential data differences is of 

prime importance in frequent differencing. Subtracting the values of two consecutive observations 

on a time series is the easiest way to figure out the initial data difference. If the initial data has n 

observations (𝑌1, 𝑌2, 𝑌3 … 𝑌𝑛), the first differenced data became n-1 observations (𝑋2, 𝑋3 … 𝑋𝑛) 

where 𝑋2 = 𝑌2 − 𝑌1, 𝑋3 = 𝑌3 − 𝑌2 … 𝑋𝑛 = 𝑌𝑛 − 𝑌𝑛−1 

Generally,  𝑋𝑡 = ∆𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1 

     𝑍𝑡 = ∆𝑋𝑡 = ∆2𝑌𝑡 = ∆(∆𝑌𝑡) = ∆(𝑌𝑡 − 𝑌𝑡−1) = ∆𝑌𝑡 − ∆𝑌𝑡−1   ………………… (3.3) 

= (𝑌𝑡 − 𝑌𝑡−1) − (𝑌𝑡−1 − 𝑌𝑡−2). 

3.7.3 Model Selection Criteria 

In time series analysis, the best-fitting model can be chosen using a variety of factors. Performance 

evaluation metrics like the Mean Squared Error (MSE), Bayesian Information Criterion (BIC), and 

Akaike Information Criterion (AIC) were used. These standards aid in evaluating the complexity 

and goodness of fit of various models. The following formula is be used to determine the AIC. 

𝐴𝐼𝐶 = 2𝐾 − 2𝐼𝑛(𝐿)   ……………………………………..   (3.4) 

Where K represents a parameter count, and L is the maximum value of the likelihood function for 

the model. The decision rule selects a model with a minimum value of AIC. (West Arsi, 2023). 

Bayesian Information Criterion is given by the following formular 

𝐵𝐼𝐶 = −2𝐿𝑜𝑔(𝐿) + 𝑘𝑙𝑜𝑔(𝑛)………………………………….. (3.5) 

3.7.4 Model / Parameter Estimation 

According to Montgomery, Jennings, and Kulahci (2015), parameters of a model that has been 

roughly identified is estimated using the least squares method. Two fundamental methods for 

fitting Box-Jenkins models are likelihood maximisation and nonlinear least squares. Once the 

values of p, d and q are obtained, the greatest likelihood estimate is frequently the recommended 

course of action and back casting can apply when estimating the initial residuals. 

3.7.5 Diagnostic Checking. 

The appropriateness of the fitted model was evaluated using residual analysis from the AR and 

MA models. Residuals of an ARIMA model were characterized by the white noise and a stationary 
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distribution. A residual scatter plot with a rectangular shape and no trends indicates that the model 

is adequate. For the residuals to provide the best feasible fit for the data, certain presumptions must 

be true. If the residuals of the Box-Jenkins model satisfy the assumptions, this can be ascertained 

by statistical visualizations of the residuals. Another choice is to examine the Box-Ljung statistic's 

value. 

The model was diagnosed for the following:  

1. Normality: normality was assessed through the use of histograms, normal quantile-

quantile plot and density plot. Alternative methods include Shapiro-Wilk and Kolmogorov-

Smirnov test.  

2. Independence: ACF and PACF analysis was used to assess for independence. The plots 

aid in determining the order of AR and MA components. The aforementioned plots display 

the relation between a time series and its lag values. The Durbin-Watson test is an 

alternative for determining whether the residuals have positive autocorrelation. 

An ARIMA model for motor vehicle accidents in Zimbabwe was represented by the equation 

below 

     𝑌𝑡 = 𝜇 + 𝜑1𝑌𝑡−1 + 𝜑2𝑌𝑡−2 + ⋯ + 𝜑𝑝𝑌𝑡−𝑝 + 𝜃1𝑌𝑡−𝑝 + 𝜃1𝜀𝑡−1……. (3.6) 

The model assumes that a time series 𝑌𝑡 follows a stationary process after differencing. The 

coefficients 𝜑 and 𝜃 represent the strength and direction of the dependencies, respectively. The 

error term ε(t) accounts for the unexplained variation in the time series. 

3.8 Artificial Neural Networks Methodology 

1. Data processing 

Data pre-processing comes first in ANN design, before model fitting. Pre-processing is the process 

of data coding, enrichment, and cleaning that includes handling missing data and compensating 

for noise. Prior to feeding data into the neural network, the data was normalized to avoid the 

saturation of hidden nodes. Data normalization techniques like min-max, sigmoid and Z- score 

were applied to data pre-processing. Min-max normalization technique was applied first on input 
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value so as maximize the neural network model's convergence rate (Mapuwei et al, 2020). One 

can generalize the minimum-maximum criterion formula by using: 

𝑦′
𝑡

=
𝑌𝑡 − 𝑀𝑖𝑛 (𝑦𝑡)

𝑀𝑎𝑥 (𝑦𝑡) − 𝑀𝑖𝑛 (𝑌𝑡)
… … … … … … … … … … … … … . . (3.7). 

where 𝑦𝑡 is the number of accidents at given t, 𝑦′𝑡 represents normalized, Min (𝑦𝑡) and Max (𝑦𝑡) 

the highest and lowest values, respectively, of the variable 𝑦𝑡 over the range of data. 

2. Training and Testing Set 

 A process of creating a network model starts once the data has been processed. Training and 

testing sets were created from processed data. The network model was developed using the first 

set, also known as the model-building set or training set. The model's forecasting accuracy is 

assessed using the second set, often known as the testing or prediction set. Typically, the training 

set receives higher percentages whereas the testing set receives lower percentages (Yaseen et al, 

2016). The training and testing sets consisted of twenty-four (24) and seven (7) observations, 

respectively which is the 80:20 % ratio. It is of prime importance to note that the forecasts are 

more accurate when the test set is smaller in length. 

3. Model Architecture 

The number of hidden, output and the number of neurons in all layers were used to determine the 

model architecture. Trial and error process was used to determine the optimal number of layers 

(Mai et al, 2021). The architecture is written as follows: 

       𝐼 − (𝐻1, 𝐻2, 𝐻3 … , 𝐻𝑛) − 0   ...………............................... (3.8) 

Where 𝐼 denotes input size, 𝐻𝑛 the hidden unit count, and O neuron count in output layer. 1-(10,5)-

1 is an ANN architecture with 1 input layer, 2 hidden layers (with 10 neurons in first layer and 5 

5 neurons in second hidden layer) and 1 output layer respectively.   

4. Training a Neural Network 

The process involves determining weights and quantity of neurons in each layer of the network. 

The most well-liked and frequently applied network learning technique is backpropagation, 

sometimes known as backward error propagation or backprop. A rule called backpropagation 

extends the gradient descent technique and was used to modify the weights in the hidden layer of 
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an ANN. It gives the change ∆𝑤𝑗𝑘in the weight of the connection between neurons 𝑗 and 𝑘 at 

iteration 𝑖 as  

∆𝑤𝑗𝑘(𝑖) = −𝛼
𝜕𝐸

𝜕𝑤𝑗𝑘(𝑖)
+ 𝜇∆𝑤𝑗𝑘(𝑖 − 1)……………..……… (3.9) 

where α is called the learning coefficient, ∆𝑤𝑗𝑘(𝑖 − 1)the weight change from the iteration before 

it (Mai et al, 2021). 

By guaranteeing a maximum drop in the error function, the learning coefficient quickens the rate 

of convergence. Convergence is incredibly slow if it is too tiny, particularly if  

 the error function is too big, it won't converge. Because it reduces abrupt fluctuations, the 

momentum coefficient acts as a lowpass filter, which tends to aid in convergence. The weight shift 

is subjected to smoothed averaging while avoiding local minima. The training data logarithm 

determined the starting number of hidden neurons, which were raised during the neural network's 

training process. Logistic and linear activation functions were used in the hidden and output layers.  

Neural Network Model Selection 

According to Cui et al (2022), the number of neurons and hidden layers in the selection process 

was systematically changed to produce the most accurate models. Neural networks without hidden 

units are the same as linear techniques for statistical forecasting. Hidden units map the input and 

the output variable, find patterns in the dataset, and provide neural networks with the nonlinearity 

feature. Top three models were selected through the use of performance evaluation metrics like 

the RMSE and MAE. Performance measures were computed using values in the test set and 

predicted values from the training set. The best model is used to compute forecasts from 2024 to 

2028. 

Multilayer Perceptron artificial neural model for the number of motor vehicle accidents in 

Zimbabwe is written as follows: 

𝑦 = 𝑓(𝑤𝑘𝑗𝑓(𝑤𝑗𝑖 … 𝑓(𝑤21𝑓(𝑤10𝑥1 + 𝛽10) + 𝛽21) + ⋯ + 𝛽𝑘𝑗) + 𝛽𝑘) … … (3.10) 

Where: 

• 𝑥1, 𝑥2 … , 𝑥𝑛 are the input features. 

• 𝑤10, 𝑤21, … , 𝑤𝑘𝑗 are the weights for neuron connections. 
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• 𝛽10, 𝛽21, … 𝛽𝑘 represents biases for each neuron in the network. 

• 𝑓( ) is the activation function. 

3.9 Model Comparison / Forecasting Accuracy 

A far more complex item, like the economy, can have its future predicted via forecasting, or a 

simpler entity, like a traffic accident, might have its future predicted for next year or five years. 

Road traffic accident forecasting analyses both past and present movements in a time series 

statistically to obtain information about possible trends for future movements. The two models 

were compared using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) to 

check their performance. Alternative metrics include Mean Absolute Percentage Error (MAPE) 

and forecast plots. MAPE (Mean Absolute Percentage Error) measures the accuracy of fitted 

model and the accuracy is expressed as a percentage. It can be calculated using the following 

formular 

                                             𝑀𝐴𝑃𝐸 = ∑
|
𝑌𝑡−𝑌�̂�

𝑌𝑡
|

𝑛
∗ 100𝑛

𝑡=0  ………………………….  (3.11) 

Where𝑌𝑡 = 𝑡ℎ𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒, 𝑌�̂� 𝑡ℎ𝑒 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑎𝑛𝑑 𝑛 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠  

The Root Mean Square is calculated using the following formular 

                                             𝑅𝑀𝑆𝐸 = √𝑚𝑒𝑎𝑛(𝜀𝑡
2)  ……………………………… (3.12)  

Also, the mean absolute error is calculated by the following formular 

3.10 Ethical Considerations. 

• Transparency in data sources 

• Harmful representations were avoided 

3.11 Chapter Summary 

The research methodology used was described in this chapter. This was then followed by data 

analysis discussions, which will be covered in the next chapter. The next section focuses on how 

the data was presented, interpreted, and analysed
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CHAPTER 4: DATA PRESENTATION, ANALYSIS AND DISCUSSION 

 

4.0 Introduction 

The procedure for analysing data and data interpretation of the study are the main topics of this 

chapter. The study evaluates the effectiveness of Artificial Neural Networks (ANN) and ARIMA 

in estimating motor vehicle accidents in Zimbabwe from 1993 to 2023. R programming software 

was used for data analysis and visualization in this study. 

4.1 Summary Statistics 

                                   

Table 4.1: Summary Statistics 

Minimum 16904 

Maximum 78481 

Range 61577 

Sum 1188650 

1st Quartile 27541 

Median 39841 

3rd Quartile 46684 

Mean 38343.55 

Sample Variance 2.09E+08 

Standard Deviation 14463.59 

Kurtosis 0.432149 

Skewness 0.408696 

Count 31 

 

Table 4.1 shows that overall observations were 31 from 1993 to 2023. It was observed that the 

minimum number of motor accidents recorded is 16904 occurred in 2008. A maximum number of 

motor vehicle accidents is 78481 recorded in 2003. Data distribution is measured in quartiles. The 

standard deviation (14463) measures dispersion from the mean (38343). Since the kurtosis and the 

skewness are positive, it implies that the number of accidents is increasing.  
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  4.2 Pre-tests /Diagnostic tests 

The time series plot for the total number of motor vehicle accidents from 1993 -2023 presented in 

Figure 4.2.1 below was carried out to determine whether the data was stationary or not prior to 

conducting any statistical tests. The plot shows a consistent pattern from (2000 -2002) and 2014 - 

2017, a sudden rise in 2003 and a trickle around 2006 and once more a steady rise in the number 

of accidents was recorded from (2008 – 2017) until a sharp increase in 2018 followed by a drop in 

2020 and an uptrend from 2021 to 2023. The time series is non-stationary because the dataset did 

not exhibit any consistent variation.  

 

Figure 4.2.1: Time series Plot of Road Accidents from 1993 to 2023 

After the visualization of the plot above data was divided in an 80:20 ratio into training and testing 

sets, yielding 24 training observations and 7 testing observation. The researcher then moved 

forward with the time series data pre-tests. 

4.2.1 ADF Test for Trend Stationarity on Training Data 

Table 4.2.1: Augmented Dickey-Fuller test 

    RTA: Data 

                    Dickey Fuller = -2.3502           lag order = 2     p-value = 0.439                            
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Table 4.2.1 show results from ADF test. This was done to show if the data was stationary. Since 

p-value is greater than 0.05 level of significance, we can conclude that the data is not stationary. 

ACF and PACF plots were also used in Figure 4.2.2 to examine stationarity of the data. 

4.2.2 Autocorrelation function (ACF) and Partial autocorrelation function (PACF) 

If an autocorrelation function plot does not die off quickly, it implies non stationarity in the data. 

Figure 4.2.2 below shows that the data was highly correlated since some lags has been noticed 

crossing the dotted blue line hence strengthening the idea of non-stationarity. 

  

Figure 4.2.2: ACF and PACF Plot for Raw Data 

The study proceeded to the next step which involves the process of differencing the time series 

data. As reflected in previous chapters, non-stationary data has to be differenced as a way of 

making it stationary and ready for further analysis.  

4.2.3 First Difference 

 

Figure 4.1.3: First Difference Plot for training data 

Figure 4.2.3 above is a time series plot for differenced data. It is evident that fluctuations are around   

zero (0) which implies that over time, the data's average remains unchanged. This simply indicates 
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that following the initial differencing, the data became stationary. Consequently, there was no need 

for additional differentiation for the ARIMA (p, d, q). A further test for stationarity was conducted 

in the following table (Table 4.3). Outcomes were that, the p value was less than 0.05 (0.03418 < 

0.05) indicating stationarity. 

 

Table 4.2.2: Augmented Dickey- Fuller Test on Differenced Data  

RTA: DATA Frame_d1 

Dickey-Fuller = -3.82                   Lag order = 2               p-value = 0.03418   

 

4.3 Model Output/ Results  

4.3.1 Model identification 

This stage's primary objective is to identify the moving average terms and autoregressive model 

so that the recognized model, ARIMA (p, d, q), can be obtained. The correlogram of the 

differenced data was examined and plotted as indicated in Figure 4.3.1. 

 

Figure 4.3.1: Results of PACF and ACF from Differenced series 

It is evident that both PACF and ACF plots in Figure 4.3.1 did not cut off, p = 0 and q = 0 

respectively. Since the data was differenced once, the suggested model is ARIMA (0,1,0) without 

variations in the seasons. An auto-ARIMA function in R programming was used and a model with 

minimum AIC value was selected as the best model, which is the AR (1) from Table 4.3.1. 

Selection of AR (1) model or ARIMA (1.0.0) was due to the underlying data properties such as 

autocorrelation structure which was adequately captured by first-order autoregressive term or 
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might be due to Occam's razor principle which leads to the selection of a simpler model if it 

adequately explains the data, and in this case, an ARIMA (1,0,0) model would suffice. 

Table 4.3.1 Model Identification Using Auto-Arima 

MODEL 

ARIMA (2,0,2) 

AIC VALUES 

531.36 

ARIMA (0.0.0) 532.45 

ARIMA (1.00)     526.75** 

ARIMA (0,0,1) 527.44 

ARIMA (2.00) 527.83 

 

4.3.2 Parameter Estimation 

This stage involves determining the parameters of the moving average and autoregressive 

components of the selected model. 

Table 4.3.2: Estimated Model Parameters 

Series: RTA DATA Frame 

Model: ARIMA (1,0,0) 

AR (1)       =   0.5183                                     Standard error      =   0.1689   

Estimated Variance   = 167116245                 Log likelihood    = -260.38    

AIC   = 526.75                                                                  AICc =    527.95          BIC   = 530.29 

Training set error measures 

                                            ME     RMSE       MAE       MPE     MAPE       MASE     ACF1 

Training set                     55.78    12376.99    8982.24   -11.93    28.26         0.981        0.123   

 

Table 4.3.2’s AR (1) value demonstrates how the series’ previous value(s) affects its current value 

with an autoregressive coefficient of 0.5183. The model also includes a non-zero mean term of 

35929.63, which represents a constant offset added to each value in the series. The standard errors 

for the AR coefficient (0.1689) represent the average amount of variability or uncertainty in the 

estimated value of the coefficient and mean term (5030.627) represents uncertainty in the 

estimated mean value. 



30 | P a g e  
 

4.3.2 .1 Model Structure 

 

𝑌𝑡 = 35929.63 + 0.5183𝑦𝑡−1 + 𝜀𝑡            … … … … … . (4.1) 

With the inclusion of a baseline accident rate, past year's accidents, and random fluctuations, this 

equation offers a framework for examining and simulating Zimbabwe's time series of motor 

vehicle accidents. It allows for the investigation of trends, projections, and comprehension of the 

dynamics of auto accidents in the nation over the specified time frame. 

4.4 Model Diagnostic Checking 

4.4.1 Stationarity 

The residuals’ time series plot shows that there is no pattern that is being followed. This means 

that the residuals are random or the variance remained constant. Therefore, the structure of the 

residuals indicates that the fitted model is stationary. Therefore, this model can be used for 

prediction and policy making. 

 

Figure 4.4.1: Model Residuals 

4.4.2 Test for Independence 

 

Figure 4.4.2: Test for Independence 
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The correlograms in Figure 4.4.2 shows no structural pattern hence indicating that there is no serial 

autocorrelation in the data for residuals. Between lag 1 and lag 14, there are no unique lags that 

are greater than the threshold. The fitted model’s residuals have no association with the variable 

and are precisely reliant on it. 

4.4.3 Test for Normality 

Figure 4.4.3 is a histogram of residuals. From its shape we can tell that the residuals follow a 

normal distribution. 

 

Figure 4.4.3: Histogram of Residuals 

Plotting the quantiles yields a normal Q-Q plot which ascertains whether the variables are normally 

distributed or not. Since most of the plotted points in Figure 4.4.4 below are straight lines, the 

distribution is shown to follow a normal distribution.  

 

Figure 4.4.4: Q-Q Plot for Normality Test 
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4.5 Model Validation Tests 

4.5.1 ARIMA Training Set 

Table 4.5.1: ARIMA Training Set Metrics Table 

Training set error measures 

 

                                                 ME     RMSE       MAE       MPE     MAPE       MASE       ACF1 

Training set                   55.78    12376.99    8982.24   -11.93    28.26         0.981        0.123 
 

 

The effectiveness of a model in forecasting motor vehicle accidents between 1993 and 2023 is 

evaluated based on training set error measures, the mean error (ME) is 55.78, suggesting that 

average predictions are marginally higher than actual values. The Root Mean Square Error 

(RMSE) of the model presented above is 12376.99 indicating overall accuracy. Additionally, the 

Mean Absolute Error (MAE), MPE and MAPE of 898.24, -11.93 and 28.26 respectively suggest 

the model’s average predictions below actual values. 

4.5.2 Modified Ljung-Box 

ARIMA model was validated using the Ljung test as follows 

H0: The time series does not exhibit serial autocorrelation.  

H1: The time series exhibits serial autocorrelation. 

Table 4.5.2: Ljung-Box Results for Serial Autocorrelation Test 

                                           data: RTAModel$residuals 

Chi-Square                          1.9927                         11.06                       12.56                          13.87 

DF                                          5                                 10                         15                                 20 

P-Value                          0.8502                        0.3529                      0.6365                        0.8373 

  

Table 4.5.2 shows that p-values are greater than 0.05 which implies lack of serial autocorrelation 

in the model and this results in the acceptance of H0 on the fitted model. 

4.5.3 Forecasting 
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Table 4.5.3: Predicted ARIMA values for annual forecasts (Training data) 

Year Forecast Lo 95 Hi 95 

2017 41502.6 16165.472 66839.73 

2018 38818.46 10279.903 67357.01 

2019 37427.17 8087.961 66766.38 

2020 36706.02 7155.392 66256.64 

2021 36332.22 6725.049 65939.39 

2022 36138.04 6516.123 65760.81 

2023 36038.04 6411.619 65664.46 

 

In sample forecasting using ARIMA model was computed in Table 4.6.1 The forecasts show a 

decreasing trend in motor vehicle accidents from 2017 to 2023 based on the training data which 

is inconsistent with the actual data.  

4.6 Multilayer Perceptron Neural Network Model. 

4.6.1 Selecting the Best Neural Network Model. 

The study systematically selected several models with different architectures beginning with the 

one having fewer hidden units. MLP models were separated according to the number of hidden 

layers. Trial and error method was employed in the selection of inputs. Three MLP models in table 

4-8 were generated and performance metrics were used to evaluate the models.      

Table 4.6.1:  MLP Neural Network Model Identification 

Model                              Structure                                                 Testing set 

  RMSE MAE 

1              1-(10)-1 7631.466 6165.056 

2 1-(10,5)-1 7428.460* 5762.852* 

3 1-(10,9)-1 7459.050 5820.136 
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The table above shows the results from Multilayer Perceptron model identification. Of the three 

selected MLP models 1-(10)-1, 1-(10,5)-1 and 1-(10,9)-1, the one with minimum MAE and RMSE 

values has been considered the best model for the data. The model with architecture of 1-(10,5)-1 

having MAE of 5762.852 and RMSE of 7428.460 was considered the best ANN model for the 

number of motor vehicle accidents data.       

Table 4.6.2: In sample Forecasts of MLP models  

Year Actual MLP 1 

1-(10)-1 

MLP 2 

1-(10,5)-1 

MLP3 

1-(10,9)-1 

2017 46681 48912.12 48452.72 48699.78 

2018 58739 48408.63 47591.67 47870.12 

2019 45920 49008.87 48117.07 48522.15 

2020 35560 48463.42 47872.27 47957.39 

2021 45791 48906.33 48013.95 48483.13 

2022 51107 48572.21 47664.62 48030.29 

2023 51924 48906.22 48116.89 48452.90 

                                          MAE                   6165.056                  5762.852*               5820.136 

                                        RMSE                   7631.466                  7428.460*               7459.050 

The table above shows the results of different forecasts or predictions from the selected MLP 

models versus the actual values of the testing data set from 2017 to 2023.It was observed that the 

same model that has the lowest MAE and RMSE, produced forecasts which are quite closer to the 

actual values as at the period thereby enhancing the suitability of MLP 1-(10,5)-1 in forecasting 

and simulations.     

4.6.2 MLP Model Architecture 
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Figure 4.6.2: MLP Model Architecture 

Figure 4.6.2 above shows the architecture of the best MLP model from only three selected MLP 

architectures for motor vehicle accidents data in Zimbabwe from 1993 to 2023. The architecture 

contains a single input layer, two hidden layers with ten and five neurons respectively and lastly 

one output layer.       

4.6.3 Comparison of MLP versus ARIMA Model 

Yearly number of motor vehicle accidents data was compared with the forecasts of ARIMA and 

MLP as shown in table 4.6.3 below. The graph shows that the pattern of MLP is tending to favour 

estimated values other than ARIMA which has a specific direction since it projected a linear plot 

as shown in Figure 4.6.3. Performance measurement metrics like MAE and RMSE were also used 

to evaluate the models and MLP had MAE and RMSE which were superior than that of ARIMA. 

This means that MLP performed better than ARIMA model. The MLP was then used to forecast 

the number of motor vehicles from 2024 to 2028 as shown in Figure 4.6.4.    

Table 4.6.3: In Sample Forecasts of motor vehicle accidents by the MLP and ARIMA 

models 
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Year Actual ARIMA MLP 

2017 46681 41502.6 48452.72 

2018 58739 38818.46 47591.67 

2019 45920 37427.17 48117.07 

2020 35560 36706.02 47872.27 

2021 45791 36332.22 48013.95 

2022 51107 36138.04 47664.62 

2023 51924 36038.04 48116.89 

                                          MAE                            8982.242                       5762.852* 

                                                   RMSE                            12376.99                       7428.460* 

 

Figure 4.6.3: Performance of ARIMA and MLP Versus Actual Testing Data 

Forecasting using the best model MLP 2 
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Figure 4.6.4: Forecasting using MLP from 2024 – 2028 

Figure 4.6.4 above, resembles the forecasted number of motor accidents from 2024 to 2028 using 

the best MLP model, the blue line and grey shades indicating confidence interval for the number 

of motor vehicle accidents. The plot shows a decreasing trend on future motor accidents. Below 

is a table for MLP annual forecasts. 

Table 4.6.4 Out of Sample MLP Forecasts from 2024 - 2028 

Year Point Forecast 

2024 48819.75 

2025 50012.30 

2026 49536.89 

2027 49720.53 

2028 49630.95 

 

4.7 Discussion of Findings 

It can be observed that MLP model with architecture 1-(10,5)-1 performed much better than 

ARIMA through the use of performance measurement metrics like MAE and RMSE. MLP 

model’s predictions were slightly accurate (more inclined to value estimation) than that of ARIMA 

which were directional. The MLP plot in forecasting the number of motor vehicle accidents from 
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2024 up to 2028 shows a decreasing trend in the number future accidents. Overall, there was an 

increase in the number of motor vehicle accidents from 1993 to 2023 as shown in Figure 4.2.1 

However, the forecast curve gives a downward trend from 2024 to 2028. As forecasted by Mutangi, 

the data for this study shows an increase of motor vehicle accidents from 2015 to 2023. MLP 1-

(10,5)-1 performed better than AR (1). The results are in line with what was said in literature by 

Wannuraw et al in 2023 that ANN performs better than ARIMA. 

   4.8 Chapter Summary 

The chapter outlined presentation and analysis of data using the two proposed models, ARIMA 

and ANN (MLP). The best performing model was found to be Multilayer Perceptron a type of 

Artificial Neural Networks. Visualizations done in this chapter shows the trends and forecasts in 

the number of motor vehicle accidents in Zimbabwe hence providing insights to the stakeholder. 

The following chapter will dwell much on conclusion and provide detailed recommendations for 

different stakeholders. 
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CHAPTER 5: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

5.0 Introduction 

This chapter provides a comprehensive summary, recommendation and conclusions based on the 

findings of the study comparing ARIMA and Artificial Neural Networks (ANN) for time series 

analysis of motor vehicle accidents in Zimbabwe from 1993 to 2023. The chapter also highlights 

the areas for further research that were not mentioned by the researcher in the study. 

5.1 Summary of   the Study and Findings 

The study looked at the comparative analysis of ARIMA and ANN in predicting motor vehicle 

accidents in Zimbabwe from 1993 to 2023. The study’s objectives were to analyse the temporal 

patterns and trends of motor vehicle accidents, to fit ANN and ARIMA models to the data, compare 

the performance of the ARIMA and ANN and forecast future accidents from 2024 to 2028. The 

sample of the study included 31 observations and a quantitative research design was employed. 

The data was obtained from TSCZ website and other government publication reports. A class of 

ANN which is the Multilayer Perceptron’s performance was compared against ARIMA model.  

The first objective of the study is clearly shown in Figure 4.2.1 It shows the pattern and trend of 

motor vehicle accidents from 1993 to 2023 with an increasing trend. The increasing trend is in 

agreement with what was said in literature by Mutangi in 2015. Table 4.6.3 is a comparison of 

MLP and ARIMA in sample forecasts from 2017 to 2023 versus the actual data using performance 

metrics. A study by Wannuraw in 2023, compared the ARIMA and ANN and results that ANN 

performed better than ARIMA is in line with the results of the present study.  

The optimal model was determined to be an ARIMA with the least AICc values and BIC. 

Additionally, Ljung-Box statistics were employed to evaluate its level of quality. ARIMA (1,0,0) 

was determined to be the most effective model for simulating and forecasting the data on motor 

vehicle accidents by a time series package in R (auto-Arima function). Three MLP models with 

architecture:  1-(10)-1, 1-(10,5)-1 and 1-(10,9)-1 were developed and the best performing model 

for simulating and forecasting the motor vehicle accidents was found to be MLP (2) with the 

architecture 1-(10,5)-1. The suitability and validation of the aforementioned approaches were 
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assessed at various stages. The actual and forecasts were slightly close to match. Statistical metrics 

like the MAE and RMSE were used to evaluate the models. 

Furthermore, the study’s outcome of the current work coined that forecasting is feasible using 

statistical analysis of both current and past time series data as one of the researcher’s objectives. 

The two approaches demonstrated their effectiveness in capturing the patterns and trends. ARIMA 

model showed a strong performance in short-term forecasting while MLP exhibited superior 

performance in long-term forecast with complex nonlinear relationships. The performance of 

ARIMA and MLP was compared. The results revealed that MLP outperformed the ARIMA model 

in making predictions through the use of evaluation metrics and it showed that ARIMA predictions 

were directional. The ANN model was then used to make final forecasts of future accidents from 

2024 up to 2028 and this shows that all the objectives by the researcher have been met.   

5.2 Conclusions 

From the findings of the research, it can be concluded that the Multilayer Perceptron (MLP) with 

the architecture of 1-(10,5)-1 was the best model in predicting future accidents in Zimbabwe. Since 

there was a slight decrease in forecasted data, it shows that for the next 5 years there will be less 

accidents. However, it is of prime importance to take note that the model does not reduce or 

increase the number of accidents in future due to uncertainties but only in showing the trends of 

motor vehicle accidents in the country.     

5.4 Recommendations 

To the Driver 

Due to the surge in motor vehicle accidents, drivers are recommended to be extra cautious during 

peak accident hours for example, in rush hour, late nights and weekends. They are also 

recommended to slow down and drive defensively during rainy weather.  

To the Government 

The governments should maintain and keep on improving infrastructures especially in high 

accident areas. Traffic enforcement should be strict so as to lower reckless driving.  

To Passengers 

They are encouraged to wear seatbelt, avoid distractions like talking to the driver, stay aware and 

aware of the surrounding and avoid travelling with reckless or inexperienced drivers.  
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5.5 Areas for Further Research 

Subsequent research on this topic ought to investigate the possibility of utilizing hybrid linear-

non-linear models for precise motor vehicle accident prediction. Some areas that warrant further 

research includes the investigation of exogeneous factors like weather and economic indicators on 

motor vehicles and incorporating them into the forecasting models. 
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APPENDICES 

 

 

TURNIT IN REPORT 

 

 

ARIMA R CODES 

#### Step 1: INSTALL REQUIRED PACKAGES  

attach(ryt) 

library(ggplot2) 

library(ggpubr) 

library(tseries) 

library(forecast) 

library(caret) 

library(dplyr) 
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##### SPLIT THE DATA INTO TRAINING AND TESTING SET USING 80:20 RATIO 

train_ratio <- 0.8 

train_size <- floor(train_ratio * nrow(ryt)) 

train_size 

w <- ryt[1:train_size, ] 

w 

print(w,n = 24) 

##### COVERT DATA INTO TIME SERIES DATA 

class(w) 

wt = ts(w$Yt,start = min(w$YEAR),end = max(w$YEAR),frequency = 1)   

class(wt) 

plot(wt) 

##### STATIONARITY TEST  

adf.test(wt) 

a <- diff(wt,d = 1) 

adf.test(a) 

plot(a,main = "First Difference (Training data)",type = "o",pch = 15,xlab = "Time(Years)",ylab = 

"Number of accidents") 

adf.test(a) 

acf(a,main = "Autocorrelation Function for First Difference_(D1)") 

pacf(a,main = "Partial Autocorrelation Function for First Difference_(D1)") 

mymodel = auto.arima(wt,ic = "aic",trace = TRUE) 

mymodel 

summary(mymodel) 

####RESIDUAL TESTS / MODEL DIAGONISTIC TESTS 

plot(mymodel$residuals,main = "Model Residuals",pch = 15,type = "o") 

acf(mymodel$residuals,main = "ACF of Residuals") 

pacf(mymodel$residuals,main = "PACF of Residuals") 
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hist(mymodel$residuals, freq = FALSE, main = "Histogram of Residuals", xlab = "Residuals", 

col = "turquoise") 

lines(density(mymodel$residuals), col = "black", lwd = 2) 

qqnorm(mymodel$residuals) 

qqline(mymodel$residuals, col = "black") 

####MODEL VALIDATION TESTS 

Box.test(mymodel$resid, lag=5, type ="Ljung-Box") 

Box.test(mymodel$resid, lag=10, type ="Ljung-Box") 

Box.test(mymodel$resid, lag=15, type ="Ljung-Box") 

Box.test(mymodel$resid, lag=20, type ="Ljung-Box") 

##### FORECASTING 

myforecast = forecast (mymodel, level=c (95), h=7) 

myforecast 

plot(myforecast) 

 

MLP CODES 

#### install required packages 

attach(ryt) 

library(ggplot2) 

library(ggpubr) 

library(tseries) 

library(forecast) 

library(caret) 

library(dplyr) 

library(nnfor) 

library(plotly) 

####split data into training and testing sets 

train_ratio <- 0.8 
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train_size <- floor(train_ratio * nrow(ryt)) 

train_size 

w <- ryt[1:train_size, ] 

w 

print(w,n = 24) 

#### normalize the data 

min_value <- min(w$Yt) 

max_value <- max(w$Yt) 

n <- (w$Yt- min_value) / (max_value - min_value) 

class(n) 

print(n) 

#### convert data into time series data 

nt = ts(ryt$Yt,start=1993,end = 2016) 

nt 

ft <- ts(ryt$Yt,start = 1993,end = 2023) 

#### MLP model fitting 

mlp.fit = mlp(nt, hd = c(10,5), hd.auto.type = ("valid"), reps = 100, comb = 

c("median","mean","mode")) 

plot(mlp.fit) 

a=forecast(mlp.fit,h=7) 

plot(a, main ="Forecasts from 2024 - 2028 by MLP (1-(10,5)-1) Model") 

summary(mlp.fit,) 

summary(a) 

mlp.fit = mlp(ft, hd = c(10,5), hd.auto.type = ("valid"), reps = 100, comb = 

c("median","mean","mode")) 

plot(mlp.fit,) 

summary(mlp.fit,) 

b = forecast(mlp.fit,h = 5) 

b 
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plot(b) 

summary(b) 

 

 


