BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF SCIENCE AND ENGENEERING

DEPARTMENT OF STATISTICS AND MATHEMATICS

A Time Series Analysis of population growth trends in Bindura Town, Zimbabwe

BY Tanyaradzwa Chitau (B211953B)

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR BSC.HONOURS IN STATISTICS AND FINANCIAL MATHEMATICS

SUPERVISOR: Mrs. Pagan'a June 2025

Authorship Declaration Statement

Title of the Thesis: A Time Series Analysis of population growth trends in Bindura Town, Zimbabwe.

Author: Tanyaradzwa Chitau

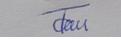
Program: Honors Bachelor of Science Degree in Statistics and Financial Mathematics

I, the undersigned author of the above-mentioned thesis, hereby declare that:

- 1. This thesis is my original work and has been prepared by me in accordance with the institution's requirements.
- 2. All sources, data, and references used in this thesis have been acknowledged and cited appropriately.
- 3. This thesis has not been submitted elsewhere for any degree or diploma.
- 4. I have obtained all necessary permissions for the inclusion of third-party content where applicable.

I affirm that this declaration is made with full integrity and in compliance with the institution's policies and academic practice.

Author's Signature:



Date: 20/06/2025

APPROVAL FORM

This is to certify, that this research project is the result of my own research work and has not been copied or extracted from past sources without acknowledgement. I hereby declare that no part of it has been presented for another degree in this University or elsewhere.

Tanyaradzwa Chitau

Student Signature Date 18/06/2025

Supervisor's Declaration

I hereby declare that the preparation and presentation of this project are per the guidelines on projects laid down by Bindura University of Science Education, Zimbabwe.

Mrs. Pagan'a Supervisor Signature

J. Date 20/06/2025

Magodora

Approved by

Heads of Department

Dr M Magodora Signature

DEDICATION

This dissertation is dedicated to my parents, Mr. and Mrs. Chitau, and to my aunt, Florence Maposa, whose unwavering guidance, encouragement, and wisdom made this journey possible.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Ms. Pagan'a, for her consistent support and guidance throughout this research. I also thank God for the strength and opportunity to complete this work. Appreciation goes to the staff of the Department of Statistics and Mathematics at Bindura University of Science Education for their academic assistance, for their helpful discussions and encouragement. I am especially grateful to my family for their unwavering support and prayers, and to my colleagues for their continued encouragement during this journey.

ABSTRACT

This study investigates Bindura Town's population dynamics from 1990 to 2023 and produces forecasts for 2025–2028 using two time-series modeling approaches. Drawing on over three decades of demographic data, the analysis applied an ARIMA (2,0,1) model identified via Box-Jenkins methodology and selected for optimal performance using AIC and BIC criteria which achieved strong accuracy (MAPE = 5.82%, R² = 0.79). A Long Short-Term Memory (LSTM) neural network, configured with a 12-month lag window and multiple hidden layers, was also implemented to capture nonlinear patterns in the data, though its performance (MAPE = 10.35%, R² = 0.76) was slightly less effective for this case. Both models project modest but consistent growth in Bindura's population, from approximately 105,822 in 2025 to 108,210 by 2028, with the 25–54 age group particularly among females contributing most significantly to the increase. These results suggest that ARIMA remains a robust tool for municipal forecasting, offering interpretable and statistically reliable projections that can inform evidence-based planning for housing, infrastructure, and public services in a rapidly urbanizing context.

Contents

С	HAPTEF	R1	. 11
	1.1	Introduction	. 11
	1.2	Background to the study	.11
	1.3	Problem statement	.12
	1.4	Research objectives	.12
	1 5	Research questions	13

	1.6	Significance of the study
	1.7	Significance to the organization13
	1.8	Significance to the university
	1.8.	1 Significance to the researcher
	1.9	Assumptions
	1.10	Delimitations of the study14
	1.11	Limitations of the study14
	1.10	Chapter Summary15
С	HAPTEF	
	2.1 Lit	erature Review
	2.2 Th	eoretical Framework
	2.2.17	ime Series Theory
	2.2.2 (Cohort-Component Theory
	2.2.3 F	Forecasting Accuracy Theory
	2.3 Co	nceptual Framework
	2.4	Empirical literature review
	2.5	Historical population growth trends
	2.6	Global population trends
	2.7 Po	pulation growth in Zimbabwe21
	2.8	Factors that affect population dynamics
	2.9	Fertility Rates
	2.10	Mortality Rates and Life Expectancy22
	2.10	.1 Migration and Urbanization23
	2.10.2	Economic Development and Work Opportunities23
	2.10.3	Government Policies and Population Control Measures24
	2.10.3	Time series analysis in population forecasting24
	2.10.5	Accurate and reliable of population projections derived using time series analysis28
	2.10	Chapter Summary

CHAPTER 3	32
3.0 Introduction	32
3.1 Research Design	32
3.2 Data Source, Population and Sampling Frame	32
3.2.1 Target Population	32
3.2.2 Data Sources	32
3.2.3 Sampling Strategy	33
3.3 Research Instruments and Data Extraction	33
3.4 Data Cleaning Procedures	33
3.5 Data Analysis Techniques	34
3.5.1 Descriptive Statistics	34
3.5.2 Pre-Diagnostic Data	34
3.5.3 ARIMA Model	34
3.5.4 Neural Network Model	36
3.5.6 Univariate Population Forecasting	37
3.6 Ethical Considerations	37
3.7 Chapter Summary	37
Chapter 4 data presentation, analysis and discussion	37
4.0 Introduction	38
4.1 Preliminary Analysis	38
4.1.1 Descriptive Statistics	38
2.11 Demography Analytics 4.1.2	39
Figure 4.1.2 Annual Population Growth Rate Error! Bookmark not de	fined.
Figure 4.1.2 Urban Vs Rural Population Growth	41
Figure 4.1.3 By Age Group Population Growth	41
4.2 Data Pre-Diagnostic test	42
4.2.1 Test for Stationarity	42
4.2.3 ACF and PACF of Raw Data	44

4.2.2 ADF Test for Stationarity	44		
2.12 The Box-Jenkins Methodology	45		
2.13 Model Diagnostic Checking	48		
2.13.4 Neural Network Model	50		
2.13.5 Data Pre-Processing	50		
2.13.6 Neural Network Architecture	51		
2.13.7 LSTM Model Testing and Validation	53		
2.13.8 ARIMA AND Neural Network Models Evaluations	54		
2.13.9 Best Model Selection	55		
Figure 4.6.2 Actual and Forecasted Population Trend (2020–2028)	56		
Figure 4.6.3 Actual and Forecasted Population Trend By Age Group and Gender (2020–2028)			
4.8 Research Findings	58		
4.9 Chapter Summary	58		
Summary, Conclusions and Recommendation Error! Bookmark not	defined.		
5.2 Conclusion	60		
1.2 Recommendations	61		
5.3.1 To Bindura Municipality and Bindura Rural District Council:	61		
5.3.2 To Policy Makers and Government:	61		
5.3.3 To ZIMSTAT Bindura Agency Office	61		
2.13.10 Further Research	62		

CHAPTER 1

1.1 Introduction

Community development, economic development, and service delivery are all impacted by population increases. Hence, it is critical to our understanding of how towns expand in (Bongaarts, 2020). Bindura, in Zimbabwe's Mashonaland Central Province, has gone through significant change over time. Once largely known for its mining activity, the town has grown into a vibrant urban hub, supported by agriculture and institutions like Bindura University of Science Education (Chimhowu, 2022). However, this growth has not been without its problems. As more people make the town their home especially from rural areas housing, water, and sanitation infrastructure are coming under intense strain (Chipika et al., 2021). To be able to respond effectively to these challenges, knowledge of how the population is changing is required. The study uses time series analysis to model past trends and forecast future trends. The forecasts are intended to guide planning and policy-making. The study also fills a local research gap and guides sustainable urban planning in Bindura (Hyndman & Athanasopoulos, 2021).

1.2 Background to the study

Population growth is a worldwide issue that changes the way resources are consumed, how people urbanize, and even informs how governments plan for future public provision. By 2022, the population reached 8 billion due in part to higher birth rates, lower mortality rates, as well as immigration (United Nations,2022). Most population growth today is in 'developing' countries where rates of mortality have decreased while rates of fertility have remained stagnant. Among these countries, Sub-Saharan Africa is experiencing increasingly high rates of growth, and could possibly double its current population by 2050 (World Bank, 2021). Managing rapid rates of growth can be a burden on cities could face heavy congestion, increased levels of traffic, and overwhelmed public provisioning (United Nations Habitat, 2021). The fertility rate across Africa remains high, average fertility on the continent is 4.6 compared to a global average of 2.4 (World Population Review,2023) Harare, Lagos, and Nairobi are a few of the cities absorbing the populations of their rural hinterlands. Unfortunately, most cities are not sufficiently planned for this growth, which leads to problems of under or unemployment and environmental degradation (World Bank, 2022). Zimbabwe is no different, where economic difficulties and mechanization of farms

have caused numerous individuals to migrate from rural to urban towns. Bindura is an example of a town that has been affected. It has grown due to mining and agriculture, but not with the municipal services it has. Problems such as overcrowded housing, insufficient water access and pressure on health and sanitation systems, among others, are becoming more common (Chipika et al., 2021). As of 2022, Zimbabwe had a population of about 16.3 million, growing at 1.5% per year (ZIMSTAT, 2023). Urban migration is the biggest factor, and towns like Bindura are absorbing the pressure without matching infrastructure investment. Time series analysis may interpret these shifts by identifying trends and predicting what might happen in the future. This can contribute to better planning and help reduce pressure on local services. By studying the case of Bindura, this research also draws conclusions that are of broader application across Zimbabwe and other emerging urban areas.

1.3 Problem statement

Like many towns in developing countries, Bindura faces rapid growth due to migration and natural increase. This presents opportunities but has consequences. Issues such as overcrowding, inadequate shelter and congested services have become significant issues (Chimhowu, 2022). Most concerning is that Bindura's infrastructure is no longer adequate. Informal settlements have developed, and the town's basic services such as water and waste have patently inadequate coverage. For example, Bindura Town draws only from the Mazowe River but over-abstraction and a higher rate of pollution mean they have water shortages (Zhou & Nyikadzino, 2020). Another issue is the availability of accurate and up-to-date population data. The majority of the town development happened without planning. This has resulted in land conflict, overcrowding, and environmental problems (Mushore et al., 2022). These issues are not unique to Bindura but rather a pattern that is replayed across many towns in Zimbabwe. If not addressed, they could make sustainable development much harder to achieve. There exists a gap in local-level studies that use such instruments as time series analysis to guide planning. This research aims to fill this gap by forecasting Bindura's population trends using available data and robust statistical methods..

1.4 Research objectives

1. To investigate and describe historical population dynamics in Bindura Town between 1990 and 2023.

- 2. To formulate a suitable time series model for predicting population growth in Bindura Town.
- 3. To assess the performance and accuracy of the specified forecasting model using statistical indicators.
- 4. To provide population forecasts for the short to medium timeframe for Bindura Town to assist local decision making and planning.

1.5 Research questions

- What are the historical trends of population growth in Bindura Town?
- What are the contributing factors to population dynamics in Bindura Town?
- How can time series analysis techniques be used to predict population trends in Bindura Town?
- What level of accuracy and dependability can we expect of the future population estimates derived from time series analysis in Bindura Town?

1.6 Significance of the study

This study has practical implications for the Bindura Town Council and other municipal councils. With accurate forecasts, they are better able to plan infrastructure and services to meet future demands.

1.7 Significance to the organization

This study has extra value as a real-case research for students studying urban development or statistical forecasting. It contributes to local academic knowledge and enables applied learning.

1.8 Significance to the university

This study offered a practical avenue to apply statistical methods in an actual-case scenario. The study allowed the researcher to exercise the use of data to address some of the current urban issues in Zimbabwe.

1.8.1 Significance to the researcher

This study offered a practical avenue to apply statistical methods in an actual-case scenario. The study allowed the researcher to exercise the use of data to address some of the current urban issues in Zimbabwe.

1.9 Assumptions

The study on population growth trends in Bindura Town operates under several key assumptions to ensure the feasibility and reliability of the research process and findings:

- Previous data from ZIMSTAT and local authorities are reliable.
- Migration and birth rate variables were fairly constant during the study period.
- Time series analysis may be applied in this kind of forecasting.
- Data was obtainable through the collaboration of stakeholders.
- No notable events distorted the population trends to any great degree.

1.10 Delimitations of the study

- The study focuses solely on the urban population and peri-urban population of Bindura.
- It looks at population data for the last 30 years.
- It takes into account only population change no broader economic or social impacts.
- It is based solely on secondary data.
- It employs time series methods only.

1.11 Limitations of the study

- 1. Results depend on the quality and availability of available data.
- 2. Sudden policy or economic shifts can render models less precise.
- 3. Time series models would be challenged if it had to deal with erratic or variable data and missing data.
- 4. The results may not be generalizable to other towns with different characteristics.

5. The extent of analysis may have been limited by the time and budge.

1.10 Chapter Summary

The chapter discussed the research and its significance in managing population growth in Bindura. It provided an overview of the concerns that the town currently facing, and how time series forecasting can be used to manage the circumstances. It also outlined the purpose, objectives, questions, assumptions, scope, and limitations of the study. This leads to following chapters which deal with methodology, analysis, and findings.

CHAPTER 2

2.1 Literature Review

In this chapter, the review of the literature on population projection techniques and time series analysis is presented. Theoretical foundations, conceptual frameworks, and empirical observations are discussed to provide the backdrop of the study. Population projection models have developed considerably in the last century, and conventional techniques like the cohort-component model have been the most common (Smith et al., 2017). However, increasing sophistication of population trends, driven by underlying determinants of migration, mortality, and fertility, has evoked the need for more flexible and accurate forecasting techniques (Lee, 2019). Time series analysis, a statistical technique used in modelling and predicting future observations based on previously recorded data, has become an effective method of demographic forecasting (Zivot & Wang, 2020).

2.2 Theoretical Framework

The theoretical framework guides the analytical process taken in this study, providing a basis for methods and reasoning securing it in established theory. This research draws upon 3 foundational theories which are Time Series Theory, Cohort-Component Theory, and Forecasting Accuracy Theory. In this way, the theoretical framework supports both the quantitative modelling of population growth in Bindura, as well as interpreting its demographic trajectory

2.2.1 Time Series Theory

It is time series theory that is the theme of this research because it gives statistical frameworks of using previous population change data to project future developments. Bindura Town has been subjected to population growth fluctuation due to a range of factors related to rural-urban migration, economic reform, and government policy. By using time series models, such as Autoregressive Integrated Moving Average (ARIMA), Exponential Smoothing, and Seasonal Decomposition of Time Series (STL), we establish trends and extrapolate future growth (Hyndman & Athanasopoulos, 2018). Based on previous census data, population growth in

Bindura may have increasing, decreasing, or stationary trends. The results of a time series analysis show whether the growth is classified as exponential (rapid urbanization) or linear (incremental urban growth). Although there are drivers, such as economic activity in agriculture and mining, that can affect migration and population booms, they also can be subjected to time series models that show change over time (Wang et al., 2021). Time series models can be used by Bindura policymakers to predict the future populations, which will allow for better urban planning and resource distribution (Shumway & Stoffer, 2019). However, time series models assume persistence of past trends, which may not always be true due to unexpected events such as economic crises or environmentally driven migration (Makridakis et al., 2020). Other methods are thus required.

2.2.2 Cohort-Component Theory

The Cohort-Component Theory articulated population change in terms of three distinct components: fertility, mortality, and migration (Preston et al., 2019). This model poses as useful for understanding demographic change in Bindura, since it goes beyond simply observing patterns and seeks to explain the determinants of population change. Fertility trends in Bindura directly influence the natural increase of Bindura's population. Tracking birth rates by birth cohort helps make projections about future population structures and age distributional changes (Lutz et al., 2019). Mortality rates, on the other hand, are a function of living standards, income, and access to health care. Projecting past mortality rates using this model extrapolates life expectancy change and its impact on population size over the long run (Lee & Tuljapurkar, 2020). The second strong driver is rural-urban migration, which in Bindura is high due to the presence of employment in mines and agriculture. The cohort-component method facilitates scenario-based projection via the ability to incorporate variables such as employment opportunities, the environment, and policy decisions (Wilson, 2022). The addition of biological and social components of population projection creates a distinction between a population projection method and a time series model. This aspect of the method makes it particularly useful for explaining population change attributable to influences not shown in historical data alone (e.g. population change resulting from climatic events or from governmental policies) (Fuchs & Goujon, 2021).

2.2.3 Forecasting Accuracy Theory

Forecast Error Theory enhances the visibility and accuracy of Bindura's projections through validity and less error in forecast models. The Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE), which represent deviations from actual population numbers were undertaken in order to estimate the credibility of the time series and cohort-component extrapolated forecasts (Makridakis et al., 2020) Probabilistic models provide confidence intervals instead of point forecasts and take acknowledgement of variation in economic policies, migration variations, and natural hazards, allowing Bindura policymakers to plan for best-case and worse-case scenarios (Bongaarts and Bulatao, 2022). Forecasts that include more than one technique (time series, cohort-component models) increase levels of accuracy and minimize biases to single model approaches (Fuchs & Goujon, 2021). As this research achieved high forecasting accuracy, the research provides more reliable forecasts to assist authorities on urban planning, infrastructure development, and resource allocation in Bindura Town.

2.3 Conceptual Framework

This study is conceptually based on the relationship between time series analysis and accuracy in population projection. The model postulates that time series models will have an effect on the accuracy of population projections when incorporated into such forecasting, leading to improved support in decision making by ZIMSTAT.

Figure 2.1

2.4 Empirical literature review

Empirical studies of population growth and forecasting have provided an even better understanding of their implications for urban planning, economic development, and resource management. In particular, the use of time series models like ARIMA, Exponential Smoothing, and STL decomposition have been used with great success to model historical trends and subsequent population movements. For instance, Smith et al. (2015) use ARIMA methods in a study of rural Africa and note that ARIMA models are effective for capturing long-term trends; however, thus far their application to (potentially abrupt) demographic shifts has resulted in a notable limitation. Such models may therefore not be applicable to several other transitions with shorter time frames.

Raza et al. conducted a study of urban Pakistan. (2019) utilized STL decomposition to assess the seasonal migration patterns.

Their research interpreted urban expansion had significant drivers of economic and agricultural cycles. Williams et al. (2020) also had a similar study of urban population dynamics and better forecasting of scenarios for a number of Latin American cities via hybrid modelling using ARIMA, STL and Exponential Smoothing. The researchers made similar findings to those of Peters et al (2009) and Peters and Urban (2008) based on the relative strengths and degree of reliance on each approach to improve development, and both short-term and long-term reliability. There is something of an "under-researched" area of population movement deliberations related to Zimbabwe in terms of applying higher-level modelling. With that being said we do mention a study led by Madhuko & Mutasa (2022) that similarly assessed drivers of internal migration patterns based on economic activity in more urbanized areas such as Bindura where mining and a range of colleges offered pull factors that conjoined migrants. Chirisa et al. (2023) shows further supportive evidence on the relationship between the current urban sprawl state from a lack of good urban design and development planning and historical over-crowding was due to failure to consider the arrangement of forecasting tools to use within a local agenda

2.5 Historical population growth trends

The evolution of human population trajectories took place in distinct phases influenced by the revolutionization of agriculture, improvements in health, industrial innovation, and social change. There were only small and scattered human societies at first, and this limited human population growth as physical resources were restricted by food availability, diseases, and the environment. The Neolithic Revolution brought the first large population growth phase as agriculture made food sources stable, creating settlements and higher birth rates (Boserup, 2019). The development of the first civilizations such as Mesopotamia, Egypt, China, and Indus Valley were marked by consistent population growth via trade, administered government, and surplus agricultural food. However, population growth was stunted by health shocks, such as the Antonine Plague (165-180 CE) and the Black Death (1347-1351) that showed how vulnerable The demographic structure was for health (Clark, 2021). The Industrial Revolution in 18th and 19th century North America and Europe accelerated population increase with decreased mortality rates, medical advancement, and urbanization (Mokyr, 2018). The 1940s post-World War II Green Revolution resulted in a rise in food stability, allowing for resilience to shocks in population increase. Medical advancements such as vaccines and antibiotics decreased infant mortality rates and enabled large upward trajectories for global population numbers. By the end of the 20th century, the increased stability in food and medicine saw unmatched global upward population trajectories, though population trajectories began to diverge among locations.

2.6 Global population trends

Population growth has assisted in molding economies, societies, and the environment. Over the course of history, there have been major population transformations owing to technological advancement, improvement in health, industrialization, and policy change. The understanding of the past trends of the population informs current population issues and can even project into the future.

The early human populations were sparse and small, their growth relying on food supplies, disease, and climatic conditions. The population had been in millions in pre-agricultural times. The Neolithic Revolution of circa 10,000 BCE was the first population growth to take effect significantly since agriculture provided secure sources of nutrition and settled societies

(Boserup, 2019). The transition from hunting-gathering to agricultural societies led to rising population numbers gradually.

As Mesopotamian, Egyptian, Chinese, and Indus Valley societies developed, numbers of people grew steadily. More effective agriculture, trade, and governance resulted in more complicated societies and, consequently, larger numbers of births and smaller numbers of deaths (Lee, 2020). Epidemics, war, and famine persisted in determining the size of the population. In Rome, for example, the Antonine Plague (165–180 CE) devastated its population, with evidence of the vulnerability of human settlements to disease outbreaks.

Population growth, in medieval periods, fluctuated with the occurrence of pandemics such as the Black Death (1347-1351) which eliminated about 30–60% of Europeans (Clark, 2021). All these losses aside, agrarian development and commercialization brought about long-term recovery and population growth in regions of the world. Improved agriculture and living standards contributed towards resilience and population growth.

The 18th and 19th centuries were periods of heightened population growth, especially in Europe and North America. The Industrial Revolution (1750–1850) brought about more agricultural output, medical innovations, and sanitation, which led to falling death rates and rising life expectancy (Mokyr, 2018). Economic growth and urbanization also helped to promote heightened population growth because rural-urban migration raised employment opportunities and living standards. The 20th century also witnessed a record population boom, particularly following World War II. The Green Revolution (1940s–1960s) doubled farm production exponentially, bringing to an end famine death rates. Medicine and health, through the invention of antibiotics and vaccines, recorded dramatic declines in infant mortality rates and raised life expectancy (Rosling, 2021). Economic globalization and transport development also drove migration, which accounted for population distribution and growth trends.

2.7 Population growth in Zimbabwe

Zimbabwe has experienced major population trends over the decades with influences of economic trends, migration, and state policies. The population of the country increased consistently in the 20th century owing to improved health and food production. Economic crises, political instability, and HIV/AIDS have, nonetheless, influenced population trends, resulting in a change of population growth rates (Chirisa et al., 2023). Urbanization has also been a factor, and Harare and Bulawayo had dense populations due to rural-urban migration.

Bindura Town in Mashonaland Central in Zimbabwe has had high mobility of the population due to economic activities such as mining and agriculture. Population growth has been attracted by the expansion of Bindura Nickel Corporation, and hence labor migration (Madhuku and Mutasa, 2022). Furthermore, institutions like Bindura University of Science Education have influenced population patterns with the in-migration of students and employees into the town. However, determinants like few facilities, unemployment, and limited resources are major drawbacks to the sustainable development of Bindura's population (Chigumira and Moyo, 2023).

2.8 Factors that affect population dynamics

Population dynamics is a term used to describe the dynamics of the rate of change in population size, composition, and geographical distribution over time due to causes such as birth rates, death rates, migration, and policy. The causes are very important to understand so as to plan for economic growth, resource distribution, and urbanization in a sustainable way.

2.9 Fertility Rates

The most essential driver of population growth is the fertility rate, or births per woman. High fertility will result in high population growth rates, and low fertility will lead to either population decline or stability. Culture, access to contraception, and economics all contribute to high fertility in countries of the developing world (Bongaarts, 2019). On the other hand, low fertility in the industrialized nations is brought about by increased female involvement in the labor market, education, and economic insecurity (Lutz et al., 2021). Fertility decreased in Zimbabwe because of family planning and improved education. The rural sections of the country continue to experience high birth rates because of inadequate reproductive health care services (Chirisa et al., 2023). Urbanization in Bindura Town has resulted in reduced fertility compared to peripheral rural areas because of better access to health and socio-economic status improvement.

2.10 Mortality Rates and Life Expectancy

Mortality rates have a significant effect on population processes because they are the basis of both life expectancy and growth in populations. Health, nutrition, and hygiene have improved, leading to decreasing mortality rates around the world (Preston et al., 2022). Communicable diseases, starvation, and poor health facilities still operate against mortality rates in other developing nations (Akinyemi and Odimegwu, 2022). Zimbabwe has experienced fluctuations in mortality rates due to health gains and setbacks like the HIV/AIDS epidemic. Chigumira and Moyo (2023) quote interventions in communicable disease and maternal mortality as having increased urban life expectancy, for example in Bindura. Disparities in health access between the urban and rural populations do exist.

2.10.1 Migration and Urbanization

Population mobility, or migration, greatly affects population trends. Internal and international migration is driven by economic opportunities, conflict, and environmental forces. Urbanization has been a global leading indicator, with more than half of the world's population residing in urban areas (Martinez, 2023). Urban migration is usually initiated by employment, better living conditions, and better infrastructure (Castles et al., 2021). Economic adversity has compelled internal and external migration in Zimbabwe. Zimbabweans also move to neighboring countries on a daily basis in search of employment, and urban-to-rural migration has led to further urbanization of cities such as Harare and Bulawayo (Zinyama, 2023). Bindura Town has experienced migrations based on education and mining. Bindura Nickel Corporation and Bindura University of Science Education attract employees and students, significantly boosting the town's population (Madhuku and Mutasa, 2022).

2.10.2 Economic Development and Work Opportunities

Migration, or population mobility, has a profound impact on population trends. Both internal and international migration is driven by economic opportunity, conflict, and environmental considerations. Urbanization has been a global driving indicator, with more than half of the population residing in urban areas (Martinez, 2023). Urban migration is normally caused by employment, better living conditions, and better infrastructure (Castles et al., 2021). Economic crisis has fueled internal and international migration in Zimbabwe. Zimbabweans also move to neighboring countries on a daily basis in search of employment, and rural-to-urban migration has fueled the further urbanization of cities such as Harare and Bulawayo (Zinyama, 2023).

There has been education and mining-induced migrations in Bindura Town. Bindura Nickel Corporation and Bindura University of Science Education attract employees and students, respectively, and have significantly added to the town's population (Madhuku & Mutasa, 2022).

2.10.3 Government Policies and Population Control Measures

Economic condition shapes population trends by effects on migration, fertility, as well as the mortality rate. Economically advanced countries witness a falling birth rate with an increase in the number of jobs and increased opportunities for education combined with an improvement in the standard of living (Goldstone, 2022). However, economic decline has slowed population growth and led to out-migration. The economic instability in Zimbabwe has contributed to these population changes. Most skilled laborers seek better working environments in more stable nations, impacting Zimbabwe's labor force (Chirisa et al., 2023). Similar to movement in the mining sector, agricultural practices pertaining to working and living conditions are likely impacting population stability in Bindura. While the mining industry creates jobs, employment can be subject to changes in world commodity price, resulting in effects on job security and migration (Mazarire, 2022).

2.10.3 Time series analysis in population forecasting

Population projection is a powerful, albeit handy, tool for government, business, and researchers who must forecast population change for long-term planning. Having the ability to forecast population trends accurately serves a pivotal function in forecasting future demand for resources such as education, health care, housing, and jobs. Since the world population is on the rise and migratory flows are becoming more complex, advanced tools of projection, principally time series analysis, have become more prominent.

Time series analysis is particularly suited to population trend modeling and population forecasting since it looks back at past data points to identify patterns and forecast future trends. The population data are usually collected over time, for instance, yearly, and this provides one with an abundant dataset that can exhibit seasonally varying fluctuations, long-term trends, and irregular cycles. Time series methods like ARIMA, STL, and Exponential Smoothing are

designed with the objective of separating these components and giving good forecasting models.

The most widely used forecast method to apply in time series forecasting is the Autoregressive Integrated Moving Average (ARIMA) model. ARIMA models are best applied in non-seasonal data like population patterns that also consist of typical trends of rising or falling. It has three parts combined in it: autoregression (AR), differencing (I), and moving averages (MA), which allow the model to discern between the trend as well as fluctuation. Hyndman & Athanasopoulos (2018) explain that ARIMA models can manage complex relationships in time series data using lagged values of the dependent variable (autoregressive terms) and lagged error terms in the forecast (moving average terms). ARIMA has been extensively applied in demography to forecast population growth and decline (Friedrich & Letourneau, 2017; Smith, 2015). For example, Friedrich & Letourneau (2017) applied ARIMA models in predicting United States population growth over a span of 30 years, delineating underlying trends and allowing for potential interruption of the demographic trend, i.e., migration and economic disruption.

Smith (2015) demonstrated the use of ARIMA models in forecasting population change in rural Africa, migration, and other socio-economic drivers of population movement. In the study, it was confirmed that ARIMA models are accurate in forecasting population trends, and policy making for rural development programs was thus achievable. Khan & Khan (2016) utilized ARIMA models in forecasting Pakistan's population. Based on their findings, ARIMA did succeed in capturing the overall long-term trend within the population growth of the country. They also noted, though, that ARIMA models failed when they were utilized in an attempt to model sudden demographic change, such as is experienced by mass migration or shifts in policy.

While ARIMA models are optimally used for modeling long-term trends, STL is most effective whenever seasonal trends exist within the data. Population data, especially urban data, will have seasonal trends through migration, economic cycles, and even crop cycles. STL was developed by Cleveland et al. (1990) as a method of decomposing a time series into trend, season, and residual (noise) components. Raza et al. (2019) used STL decomposition on the urban population data of Pakistan and found distinct individual seasonal patterns in inter-city migration in certain months of the year. This was especially helpful in determining the reason why the growth of urban population differs in large cities such as Karachi in certain months and not in others. The extractive extract indicated that patterns of inter-migration followed

urban patterns of labour cycles very closely, with huge numbers of agricultural workers intermigrating to the urban areas during the off-season of agriculture. Cleveland et al. (1990) found STL to be resistant to inter-seasonal inter-variability and to allow temporal transformations. The ability to tune the seasonality component is a helpful feature that allows modeling population trends, which may vary by socio-economic factors. Breaking down population data into such components, STL allows city planners to identify drivers of population growth or decline, which can be utilized in making infrastructure, housing, and social service decisions.

While ARIMA and STL are well worth it for forecasting long ranges as well as season trend, forecasting for short ranges uses Exponential Smoothing. Exponential Smoothing uses exponentially decreasing weights to past observations, with larger weights to more recent observations. This renders it highly suitable for application under the circumstances of drastically changing population characteristics at high levels, where past data would become obsolete very soon. Hyndman & Athanasopoulos (2018) discuss many types of Exponential Smoothing, some of them being Single Exponential Smoothing, Double Exponential Smoothing, and Triple Exponential Smoothing. The third is most widely applied where trend and season can be seen in data.

Raza et al. (2019) applied Exponential Smoothing to short-term urban population forecasts of Pakistan. They showed how the technique can be utilized to forecast population change brought about by unforeseen economic events, i.e., the opening or closure of factories, that trigger migratory movements. Their paper illustrated how Exponential Smoothing can rapidly adjust to changing patterns and provide quasi-real-time projections to decision-makers. Williams et al. (2020) used Exponential Smoothing to forecast urban change in the population of cities in South America. They further stated that the method performed effectively in predicting patterns of changing rates of urban growth founded on poor economic performance and shows its usefulness in informing adaptive, evidence-based policy response. Whilst every time series method has its usefulness, recent studies have been investigating the potential for using a combination of some of forecasting methods to improve accuracy. Khan & Khan (2016), for example, employed a hybrid approach, blending ARIMA and Exponential Smoothing, for Pakistan population growth projection. In their research, they learned that the fusion of the two was better than individual efforts at forecast precision because they could capture both longrun trends and short-run cycles in population movement. Williams et al. (2020) also applied the same hybrid model, employing ARIMA on top of STL and Exponential Smoothing in an

attempt to overforecast population growth in certain South American towns. The combination was discovered to be more robust at forecasting because each model behaved differently towards other parts of population growth. ARIMA accounted for long-term trends, STL accounted for cycles, and Exponential Smoothing provided sensitivity to change in the short term.

Application of time series forecasting in developing countries has been a unique problem since the characteristic of developing countries is such that the population increases suddenly and unexpectedly due to migration, economic crisis, and other factors. Raza et al. (2019) had studied population dynamics of Pakistan and had determined that the time series approach would be a more accurate alternative to traditional demographic forecasting methods, which will be too late to capture sudden demographic shifts. Similarly, Friedrich & Letourneau (2017) had illustrated the use of ARIMA models in forecasting the growth in populations of rural Africa. They stated that, because of the number of migrants in such regions, time series technique was required for boundary delineation of both gradual developing population increases and rather more quick changes by migration or financial disturbance.

In spite of their capabilities, time series models of population projection possess some drawbacks. One of the major limitations is that such methods are tremendously reliant on historical data, and even historical data may not be an accurate reflection of what could occur in the future. Hyndman & Athanasopoulos (2018) discuss that the foundation of time series forecasting that previous trends will continue to dominate in the future may not hold in circumstances which are subject to a high level of social, political, or economic changes. The second issue is that time series models are not robust to missing values and outliers. Smith (2015) also included how missing past observations or unexpected shocks, i.e., political crises or natural disasters, would lead the forecasts astray, and therefore the produced forecasts are not valid. Khan & Khan (2016) also clarified that overwhelming population shocks such as unexpected migration waves or epidemics would be challenging time series models and hence result in gigantic forecast errors. Also, while ARIMA, STL, and Exponential Smoothing are stable models, they may not be capturing external drivers such as policy changes, economic shocks, and political instability. Raza et al. (2019) proposed the integration of external data, such as economic metrics of performance, migration patterns, and policy changes, with time series models to make them robust and efficient.

Accurate and dependable population estimations derived as per analysis based on time series

Population forecasts are worthwhile planning and decision-making instruments for health, education, city planning, and infrastructure, among others. Population forecasts allow policymakers and institutions to allocate resources effectively in a manner that is both strategic and optimal. However, the legitimacy and credence of population forecasts and, more importantly, those conducted with time series analysis have remained questionable worldwide.

2.10.5 Accurate and reliable of population projections derived using time series analysis

Population projection is a function of the methodology applied, quality of data, and assumptions in the forecast model. Hyndman and Athanasopoulos (2018) explain that time series analysis, being an excellent tool for predicting trends, is not flawless and invulnerable to mistakes. The biggest issue with population projection is that data used to formulate models will have random fluctuation, unstructured drift, and structural change that will take place and cause projection inaccuracies. ARIMA models are widely used for population projection due to their ability to incorporate trends, cycles, and seasonality in time series. However, their success depends highly on the behavior of the population remaining constant over some interval of time. ARIMA models, for instance, presume that past points will continue to act in a pattern as they have done in the past and even in the future. This holds when data exhibit a well-established trend, but with sudden breaks such as policy shifts, mass migration, or financial crises.

Friedrich and Letourneau (2017) demonstrated that ARIMA models were able to adequately forecast population growth where demography is relatively stable. For example, in projecting U.S. population growth, ARIMA produced an acceptable forecast for long horizons (up to 30 years) under the assumption of proportionally constant birth and migration rates. ARIMA models can be susceptible to incredibly large errors of prediction in developing countries or where socio-political conditions are rapidly altering. Khan and Khan (2016), working on their Pakistani case, quoted that even while ARIMA models had the capacity to predict long-run population growth, their performance was poorest when the populations were hit by short-run shocks such as unforeseen migration streams or economic breakdowns. This indicates how caution rather than complete reliance should be put on ARIMA models for short-run population projection.

STL is a robust population forecasting technique where there is a seasonal component, e.g., birth cycle or urban migration. STL describes the population movement more clearly because it breaks down time series into trend, season, and residuals. STL is thus more reliable in certain applications than in less complex models like ARIMA. The reliability of STL would, nonetheless, be prone to predictability and consistency of patterns in seasonality, as contended by Cleveland et al. (1990). In situations of irregular cycles of migration or external events like natural disasters and political unrest on people's movement, the performance of STL would be impacted. As per Raza et al. (2019), STL broke down urban migration patterns in Pakistan successfully but its forecasting was less efficient in the scenario of political unrest or financial crisis, when the regular patterns were disrupted. Raza et al. (2019) also confirmed STL models are more suitable for urban areas where there would be routine population movement on the grounds of educational needs, employment conditions, and seasonal employment. Here, the seasonal aspect of STL helped in the accuracy of the predictions. Yet, in rural areas where patterns were less regular, STL predictions did not perform as well.

Exponential Smoothing techniques, specifically Triple Exponential Smoothing (Holt-Winters), are very well suited to short-term population forecasting where sudden changes in population parameters in the form of migration, birth, or death can be expected. They were discovered to work well if the population experiences changing or unforeseen modification over a brief interval. Williams et al. (2020) found Exponential Smoothing to be extremely accurate in predicting the transformation in populations of South American cities, where peaks of urban migration had been experienced as a result of economic as well as political reasons. They argued that because Exponential Smoothing puts more weight on the values close at hand, it can react swiftly in the vicinity of sudden change in population trends, i.e., migration waves or alteration in the fertility rate, and hence can be handy for short-term forecasting.

That said, having recourse to recent observations also implies that Exponential Smoothing sometimes ends up being over-sensitive to changes in the short term and therefore makes less precise long-term projections. Hyndman & Athanasopoulos (2018) advise that though these models are very sensitive to recent observations, they might not always succeed in capturing long-term structural changes in population trends and therefore have minimal potential for long-term forecasting. Because individual time series methods are limited, a number of attempts have been directed at hybrid methods where two or more methods are blended in an attempt to make predictions more accurate. Khan & Khan (2016) used an integrated ARIMA

and Exponential Smoothing model in predicting Pakistan's population growth and found that the utilization of the two methodologies in combination was more accurate than the application of either one of them. The combined methodology enabled the generation of long-term trends (ARIMA) and quick adjustment to short-term trends (Exponential Smoothing). Williams et al. (2020) used an integrated ARIMA-STL-Exponential Smoothing methodology in predicting population growth in South American cities. Their results illustrated how the hybrid model was superior to one-models in the manner in which it was able to forecast the long run trend along with short run anomalies of the data, thereby generating more precise short- and long-run forecasts.

Population projection accuracy can be made more precise with the help of data quality and quantity. Smith (2015) also noted that demographic data sets are either missing or inaccurate, especially in developing countries. Gross data, such as missing deaths or births, make the projections unbalanced and the results less accurate. Incomplete data also produce biased estimates if not adjusted accordingly. Hyndman and Athanasopoulos (2018) also note that time series models are susceptible to missing or unreliable data. Lacking historical data can cause inaccurate forecasts, especially distant forecasts. Researchers thus suggested imputation methods to complete missing values, yet they are never fully accurate and contain biases of their own.

Time series models like ARIMA, STL, and Exponential Smoothing tend to perceive historical trends being continued into the future. Raza et al. (2019) note that the assumption does not hold in the case of the presence of exogenous events like regime change in the government, economic downturn, or natural disasters that can alter population trends. A case in point would be a sudden turn in policy towards migration, shutting it down, and having a large impact on population growth with no provision for such an event under conventional time series models, resulting in forecast inaccuracies. Particularly, migration streams, while typically a strong influence on population mobility, are unpredictable with time series methods alone. Cleveland et al. (1990) predicted that while STL would be capable of tracking cyclical seasonal mobility, it may perform quite less well where mobility was driven by unforeseen political or economic determinants.

Overfitting or underfitting the model to data is one of the largest concerns of population projection. Overfitting results in unnecessary complexity of a model and to fit the noise in the data rather than fitting the trend. Smith (2015) noted that overfit ARIMA models provided far

too optimistic predictions of population growth, yet underfitting overlooks necessary trends. Khan & Khan (2016) clarified that there needs to be an estimation of suitable model parameters for ARIMA and Exponential Smoothing to avoid underfitting and overfitting. They recommended that extensive diagnostic testing and cross-validation need to be undertaken in order to ensure that it can be certain that the model is indeed representative of the underlying behavior of the population and is not unduly sensitive to short-term change.

Time series models such as ARIMA, STL, and Exponential Smoothing are effective for population projections but remain limited in capturing nonlinearities and long-term dependencies. The Long Short-Term Memory (LSTM) neural network addresses this gap by learning both short- and long-term patterns in sequential data without relying on strict statistical assumptions. In this study, the LSTM model (12-month lag, multiple hidden layers) achieved a MAPE of 10.35% and an R² of 0.76, showing reasonable accuracy though slightly weaker than traditional models, partly due to data length and missing exogenous factors. This highlights that while LSTM offers advanced predictive power, combining it with classical models and incorporating external drivers such as policy shifts, economic cycles, and migration can yield more robust and reliable forecasts.

2.10 Chapter Summary

This chapter includes a full literature review on the use of time series models in population forecasting. The chapter discusses a range of time series models, including ARIMA, Exponential Smoothing, and State-space Models. Finally, the chapter discusses the comparison between the models and whether the time series analysis was useful in forecasting for populations trends. Some studies have been discussed to examine the application of the models in demographic data and their advantages and disadvantages. Literature is also concerned with the shortcoming of conventional population forecasting methods, particularly in its ability to make accurate projections over the long term. The chapter defends the application of sophisticated time series models on the basis of their ability to make population projections more accurate, as these are critical to informed decision-making and effective resource allocation. In the next chapter, I will present research methodology.

CHAPTER 3

3.0 Introduction

The research process and methodology used in this research of the time series analysis of Bindura population growth are presented in this chapter. The chapter delineated research design, data sources, population and sampling frames, research instruments and data analysis methods that were used in this research. Data and academic ethical issue were also considered in this chapter.

3.1 Research Design

The study employs a quantitative research design, specifically a longitudinal time series design. As quoted by Bryman (2016), quantitative research entails data that is measurable and uses statistical analysis. The longitudinal design is employed as it examines data points captured at regular intervals over a span of time, as required in the analysis of population trends. The design allows for trend analysis, seasonal adjustment, and forecasting. Time series designs are particularly useful, according to Makridakis et al., (2020), when studying dynamic systems like demographic change, where past data can be used to forecast future behaviour.

3.2 Data Source, Population and Sampling Frame

3.2.1 Target Population

This study deals with the population of Bindura Town from 1990 to 1997, prior to its administrative split into Bindura Municipality and Bindura Rural District Council (BRDC), and up to 2023. The unit of analysis is the overall population in a given year, disaggregated by gender, age group, marital status, and employment type.

3.2.2 Data Sources

The research mainly relied on secondary data sources which were gathered from public and cross-checked with those of International organisation that generate authentic, publicly accessible and consistent population figures. The Bindura National Statistics Agency (ZIMSTAT) were the primary source of the past demographic figures. Other population figures

were gathered from the Bindura Municipality population reports. The United Nations Population Fund (UNFPA) and the World Bank Open Data were used in cross verifying the validity of the secondary data that was collected from the ZIMSTAT.

3.2.3 Sampling Strategy

Because of the historical nature of the population data in this research study, the probability sampling methods were not feasible. A census approach was used, thus, with purposive sampling to span the years 1990-2023, for which complete and correct population data were available. This approach ensured that every combination of data relevant to year, sex, age group, settlement type, marital status, and employment status was included. By retaining only non-missing records, the study arrived at 13,600 observations of past data, which is a good foundation for successful time series analysis and forecasting.

3.3 Research Instruments and Data Extraction

The current research mostly used computing devices and software as research instruments and also leveraged them from data extraction subsequent to obtaining authorizations from ZIMSTAT Bindura Agency offices as well as from the Bindura Municipality. The Python programming language with the anaconda development environments was used in calculating descriptive statistics, models training and testing, forecasting and visualization of procedures and results.

3.4 Data Cleaning Procedures

Before model construction and statistical modelling, data that had been extracted underwent data cleaning for data accuracy and data consistency purposes. Data preprocessing which Kotu and Deshpande (2015), aver that is one of the most crucial stages of analytical modelling as input data quality has direct impacts on statistical models' predictive accuracy. Rows or columns with duplicated or partial information were systematically removed or rectified based on aggregation rules and domain knowledge. Measures of central tendency such as the mean and mode were used to impute cells with missing data.

Mode is the most occurring value in the dataset.

3.5 Data Analysis Techniques

3.5.1 Descriptive Statistics

As noted by Gravetter and Wallnau (2016), descriptive statistics analysis is crucial in establishing structural properties and variances of historical data sets before proceeding to inferential modelling. In this study, descriptive statistics were used in summarizing population data over time and in getting an initial understanding of the underlying patterns. The main characteristics of the population values such as mean, median, standard deviation, minimum, maximum were computed. The findings assisted in providing information on the population numbers during the course of the last 34 years with regard to central tendency, dispersion, and distribution.

3.5.2 Pre-Diagnostic Data

A pre-diagnostic test was carried out to determine the appropriateness of modelling mode and meet the requirements of the Box-Jenkins method in the development of ARIMA and neural network models.

The assumption of stationarity was first investigated using the graphical examination of time series plots. In addition, the Augmented Dickey-Fuller (ADF) test was applied to statistically verify whether the series had a constant mean and variance over time. This step was essential, as stationarity is a fundamental requirement for ARIMA modelling, ensuring the model produces stable and reliable forecasts (Box et al., 2015). The ADF test provided formal evidence on whether differencing or transformation was needed before model estimation.

3.5.3 ARIMA Model

Auto Regressive Integrated Moving Average (ARIMA) modelling was utilized in forecasting population trends due to its suitability for univariate time series data. Model development was guided by the Box-Jenkins method, which involves model identification, parameter estimation, diagnostic checking, and validation. The ARIMA(p,d,q) model identified was fitted to the data after confirming stationarity, where the parameters were chosen based on the Akaike Information Criterion (AIC). As stated by Hyndman and Athanasopoulos (2018), ARIMA models are some of the most popular in forecasting because they are highly flexible and have

a sound theoretical background. Model selection. Plots of the autocorrelation function (ACF) and partial autocorrelation function (PACF) were examined to guide the selection of the autoregressive (AR) and moving average (MA) terms of the ARIMA model. The plots are utilized to identify the lag structure of the series and were utilized to determine the appropriate ARIMA(p,d,q) specification.

The Autocorrelation Function (ACF) at lag k:

$$P_{k} = \frac{Cov(y_{t}, y_{t-k})}{\sqrt{Var(y_{t})Var(y_{t-k})}}......3.4.2$$

The Partial Autocorrelation Function (PACF) measures the correlation between Y_t and Y_{t-k} after removing the linear dependence on the intermediate lags.

Parameter Estimation

Having identified the tentative orders of the models, parameter estimation was carried out with the Maximum Likelihood Estimation (MLE) procedure. MLE, according to Harvey (1993), is the method of estimating the model parameters by maximizing the likelihood function in the case of normally distributed errors. This procedure ensures that the most likely parameters are chosen to explain the data realized.

MLE parameter estimation maximizes the likelihood:

The log-likelihood is:

$$\log L(\theta) = \sum_{t=1}^{T} \log f(y_t | \theta).$$
3.4.4

This is optimized numerically to estimate \emptyset and θ

Diagnostic Checking and Validation

In order to check whether our chosen ARIMA model was able to adequately capture the underlying structure of the population series, we conducted residual diagnostic tests. Specifically, we applied the Ljung-Box Q-test to examine whether residuals were uncorrelated,

suggesting that the model accounted for autocorrelation in the data (Ljung and Box, 1978). As an alternative to performing statistical tests, we also investigated the residuals with graphical plots to check for randomness and normality. The residuals of a well-specified ARIMA model should resemble white noise. [Ljung-Box Q Test:]

$$\label{eq:logloss} \begin{aligned} Log \; l(\theta) &= \sum_{t=1}^T log \; f(y_t | \theta) \;) \; ... \end{aligned}$$
 , where

*n*is the sample size

 P_k is the autocorrelation at lag k

h is the number of lags

Null hypothesis: Residuals are white noise

3.5.4 Neural Network Model

To complement the ARIMA model, a long short term memory (LSTM) architecture was employed to model non-linear trends in data. Neural networks are data-driven models that can capture intricate relationships without requiring stringent assumptions about data distribution or stationarity (Zhang et al., 1998). The model was made using historical population data, and important hyper-parameters (hidden layer number, functions and learning rate, etc) were optimized based on the best outcome. The hybrid method has permitted the comparison of performance between established, traditional statistical models and more sophisticated machine learning algorithms.

3.5.5 Selection and Validation

Selection and Validation of best model performance was assessed using standard accuracy measures including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). Model reliability and generalizability were ascertained using cross-validation procedures and residual diagnostics. Model selection was based both on quantitative measures of accuracy and transparency. As indicated by Makridakis et al., (2018), transparency and quantitative measures of performance will assure that the forecast not only can be accurate, but also actionable in terms of policy and planning.

3.5.6 Univariate Population Forecasting

After determining the most performing model, the research study will go on to conduct future Bindura town population growth forecasts. For this purpose, univariate forecasting was employed which Hyndman and Athanasopoulos (2018) explains is Univariate forecasting methods assume that future values of a variable can be predicted using only the past values of the variable, and not using external predictors. This approach is particularly suitable for long-term population projection where reliable historical data is available, and exogenous variables may be uncertain or not available.

3.6 Ethical Considerations

Educational ethical standards were adhered to during this study in accordance with the research process. Honoured informed data use by only accessing publicly available datasets through official institutional channels with written permissions from ZIMSTAT and Bindura Municipality. Confidentiality of the Bindura population was ensured by avoiding the use of any sensitive personal information such as names and physical address. Also, the principle of non-maleficence was adhered to, as the research did not inflict any damage, either physical or reputational, to individuals, communities, or institutions. These ethical measures assisted in ensuring credibility, transparency, and social responsibility of the research.

3.7 Chapter Summary

In this chapter, the methodology of research in the time series analysis of population trends in Bindura from 1990 to 2023 is outlined. The quantitative method of research was employed with a focus on the application of the classical ARIMA model and newer deep learning neural networks for modelling and fitting the population data history and population projections to be conducted. The chapter also considered ethical factors like the confidentiality of data and transparency so that the study would align with educational ethical factors. Chapter 4 is going to present data collection methods and validation of data.

CHAPTER 4

4.0 Introduction

This chapter presents the results of the time series analysis of population growth trends in Bindura Town, Zimbabwe. The analysis utilizes secondary data from 1990 to 2023 and the chapter follows a systematic approach, beginning with descriptive statistics and visualization of population trends, followed by the specification and estimation of time series models including ARIMA and neural network models were also explored to compare forecasting capabilities. The chapter concludes with the presentation of future population forecasts and a discussion of the implications for urban planning and policy in Bindura.

4.1 Preliminary Analysis

4.1.1 Descriptive Statistics

This section presents a summary of the key descriptive statistics for the population dataset of Bindura Town. The dataset contains a total 21857 monthly observations. These values provide insight into the general distribution and variability of the population figures during the period under review.

Table 4.1.1 Descriptive Statistics

dtypes: int64(2), object(5) memory usage: 743.9+ KB None 13600.000000 count mean 267.927574 std 231.672369 5.000000 min 25% 82.000000 50% 212.000000 75% 378.000000 1198.000000 max

Name: Population, dtype: float64

The average population per unit of observation is approximately 268, with a standard deviation of 232, showing an outstanding variation across the dataset. The minimum value of 5 and maximum of 1,198 reveal a broad range in the population figures on the 33 years under study

while the median of 212 confirms a moderately right-skewed distribution. The interquartile range Q3 - Q1 = 296 which also points to significant variability between the lower and upper quartiles. This statistical overview lays the groundwork for further time series modeling and forecasting.

2.11 Demography Analytics 4.1.2

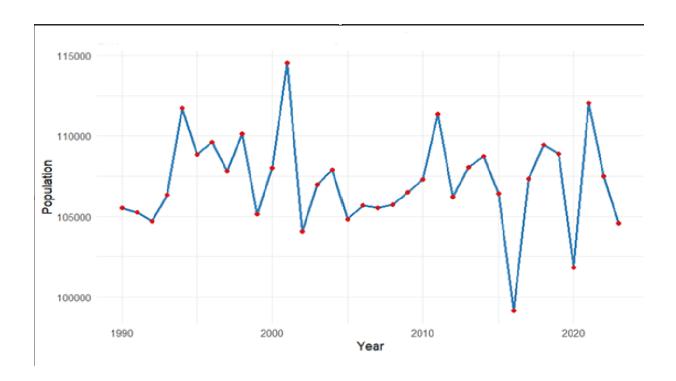


Figure 4.1.1 Town Total Population Annual Historical Growth

Figure 4.1.1 shows that Bindura Town's total annual population growth from 1990 to 2023. Bindura Town exhibits a fluctuating pattern between 1990 and 2023, showing both periods of growth and decline. Initially, numbers increased steadily until around 1995, after which the trend became more erratic, reaching a peak near 2000. Following this, the town saw a notable drop in population, likely influenced by economic changes, migration patterns, or other underlying factors. In the years after the decline, the numbers rebounded inconsistently, with sharp rises and falls continuing into the 2010s and beyond. One of the most noticeable dips occurred around 2020, followed by a slow recovery. These shifts suggest an ongoing interaction between urbanization, local economic conditions, and demographic movements.

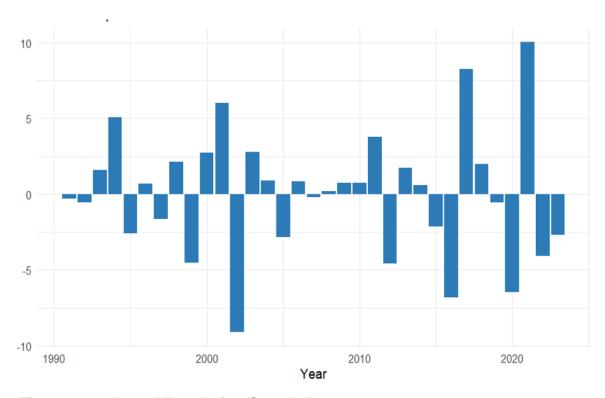


Figure 4.1.2 Annual Population Growth Rate

The population growth rate of Bindura Town between 1990 and 2022 shown by figure 4.1.2 shows a high volatility, with sharp declines occurring in 1998, 2001, 2008, and 2020, while notable positive spikes are observed in 1994, 2000, and 2021. Some periods display more gradual changes, with relatively stable trends in the early 2010s. The significant positive growth observed around the year 2000 may be attributed to a successful period of gold mining. Furthermore, the establishment of the Bindura University of Science Education and the Zimbabwe Ezekiel Guti University appears to have contributed to the positive growth trend seen after 2010. Rural to urban migration has also likely played a role in these demographic shifts. Overall, the chart reveals moderate variations in the population growth rate, with the most substantial decrease occurring around 2002 and the largest surge around 2018, suggesting the influence of various socio-economic factors over time.

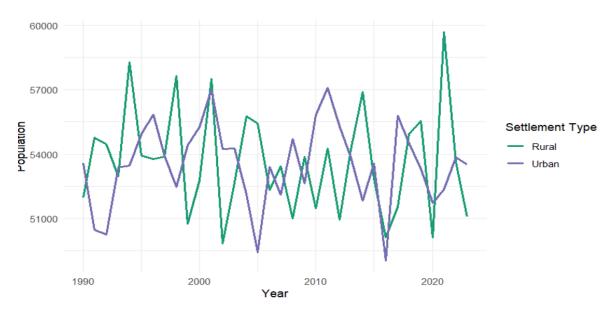


Figure 4.1.2 Urban Vs Rural Population Growth

The figure 4.1.2 shown above illiterates urban vs. rural population for Bindura Town showing a dynamic shift between settlement types over the past 33 years. The data shows that urban areas have generally exhibited consistent growth, particularly around 2000 and 2018, while rural populations have experienced fluctuations, with noticeable declines in the early 2000s and around 2015. The urban population reached its highest recorded figure of approximately 54,000, whereas rural areas peaked at around 51,000. In certain periods, urban growth outpaced rural growth, indicating a gradual movement toward urbanization. Conversely, rural populations have had periods of both expansion and contraction, suggesting varying migration trends or external influence

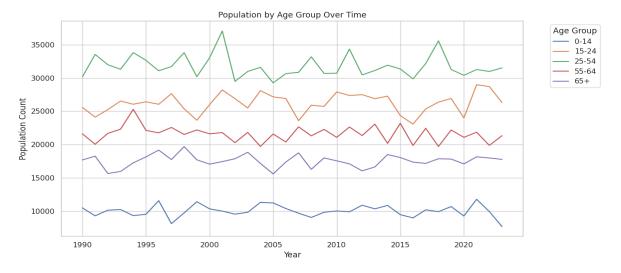


Figure 4.1.3 By Age Group Population Growth

The figure 4.1.3 above shows a population trends by age group in Bindura Town demographic evolution over time. The youngest age group (0–14) shows consistent decline since the 1990s, reflecting lower birth rates or out-migration of young families. The working-age populations (15–24 and 25–54) exhibit relative stability with slight fluctuations likely associated with business cycles. The strongest trend is in the 65+ age group, which shows steady rise a trend consistent with aging populations in most developed countries. The aging pattern has implications for both healthcare systems and workforces. The 55 to 64 age group which is preretirement age shows an increasing trend in recent years, which could be a reflection of baby boomer populations. These age group-specific diverging trends highlight the necessity for policy planning based on specific ages, particularly elder care services and youth retention strategies

4.2 Data Pre-Diagnostic test

This section presents the preliminary diagnostic tests performed on the population time series to determine its properties and to guide appropriate modelling techniques. These tests include assessments of stationarity using both graphical and statistical methods

4.2.1 Test for Stationarity

Stationarity is a fundamental requirement in time series modeling, particularly for ARIMA models. A stationary series has a constant mean and variance over time, and its auto covariance does not depend on time. Visual inspection of the raw population data was first performed on the figure shown below.

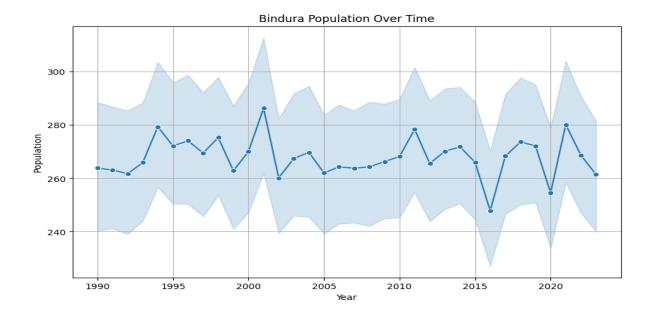


Figure 4.1.4 Bindura Population Over Time

Visual inspection of the time series plot indicates periods of fluctuating growth rates, with distinct phases of positive and negative trends over time. The chart shows notable peaks around 2000, 2010, and 2020, suggesting cycles of expansion, followed by sharp declines in certain periods such as 1998, 2002, and 2008. The presence of these variations implies potential structural changes in the data, which may affect stationarity. The shaded region highlights specific intervals where significant shifts occur, possibly marking points of instability or external influences affecting population trends. Given that graphical methods alone are insufficient for confirming stationarity, further statistical testing was conducted using the ACF, PACF, and ADF tests to assess whether the underlying trend exhibits a unit root behavior.

4.2.3 ACF and PACF of Raw Data

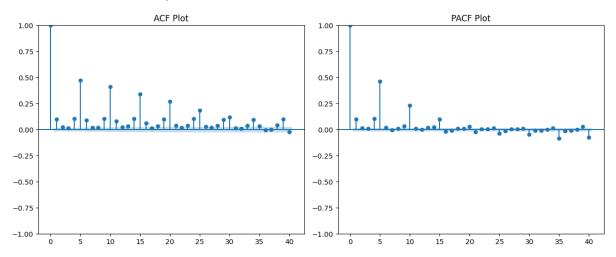


Figure 4.2.1

To further investigate the time series structure and aid in model identification ACF and PACF plots shown on figure 4.3.1 were examined. The ACF plot displayed a sharp initial decline followed by minor oscillations, a pattern consistent with a stationary series. Similarly, the PACF plot showed significant spikes at the initial lags that rapidly decayed, indicating short-term dependencies. These observations from the ACF and PACF plots provide further confirmation of the stationarity of the series, a conclusion previously supported by the Augmented Dickey-Fuller (ADF) test.

4.2.2 ADF Test for Stationarity

The ADF test was used to statistically assess whether the Bindura population time series was stationary.

The hypothesis

- (H₀) of the ADF test is that the series has a unit root (it is non-stationary).
- (H₁) is that the series is stationary.

Figure 4.2.1 ADF Results

```
ADF Statistic: -15.077333
p-value: 0.000000
Critical Value (1%): -3.4308324117510205
Critical Value (5%): -2.8617532034596382
Critical Value (10%): -2.5668834833444425
The series is stationary (reject H0)
```

Table 4.2.1 Results Evaluation

```
ADF Statistic: -15.077333
p-value: 0.000000
Critical Value (1%): -3.4308324117510205
Critical Value (5%): -2.8617532034596382
Critical Value (10%): -2.5668834833444425

The series is stationary (reject H0)
```

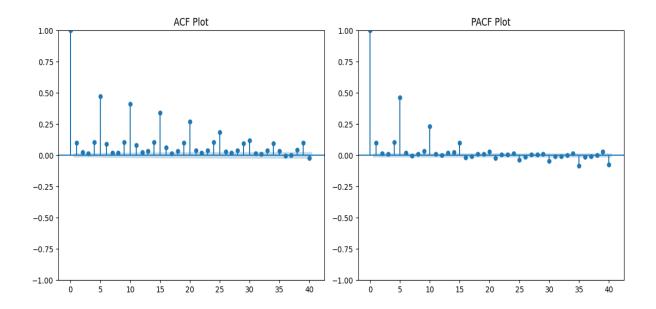
Since the ADF test statistic is significantly less than the critical values at all conventional significance levels and the p-value is 0.000, the null hypothesis is rejected. Therefore, the series is stationary, and no differencing is required

2.12 The Box-Jenkins Methodology

4.3.1 Model Identification

The initial step involved identifying the appropriate ARIMA model based on the stationarity of the series and patterns in the autocorrelation and partial autocorrelation plots and suggestions from auto ARIMA function.

Figure 4.3.1 ACF and PACF Plot



Given the established stationarity of the data without differencing meaning d = 0, potential time series models were evaluated based on the characteristics of the ACF and PACF plots. The ACF exhibited a gradual decay, suggesting the presence of a moving average component. concurrently, the PACF displayed a sharp cutoff after lag 1, implying the presence of an autoregressive AR component of order 1. Based on these initial observations of the ACF and PACF, ARIMA model was considered a suitable framework for further analysis. Specifically, the indications of an AR (1) and an MA component informed the subsequent application of the auto arima function to automatically identify and estimate the optimal ARIMA model parameters.

Table 4.3.1 Auto ARIMA Results

```
Best ARIMA for Population: (2, 0, 1) with AIC = 183507.44
ARIMA Model AIC Results - Incidence
  ARIMA order
                         AIC
     (2, 0, 1) 183507.444334
31
23
     (2, 1, 3) 184070.236180
     (3, 0, 3) 184886.429667
27
30
    (3, 1, 2) 184897.563154
    (3, 1, 1) 184994.478584
29
19
    (2, 0, 3) 185110.879206
11
    (1, 0, 3) 185173.347588
    (1, 1, 3) 185290.980923
15
7
    (0, 1, 3) 185336.340055
25
    (3, 0, 1) 185357.047384
```

Based on the model fit statistics, the ARIMA (2,0,1) model demonstrates the lowest AIC and BIC values among the tested models. This indicates that the ARIMA (2,0,1) provides the best overall fit to the data. Although AIC and BIC apply different penalties for model complexity, both criteria consistently identify the ARIMA (2,0,1) as the preferred model for this time series.

4.3.2 Parameter Estimation

Table 4.3.1 Parameter Estimation for ARIMA (2,0,1)

```
ARIMA(2, 0, 1) - AIC: 185608.99, BIC: 185646.58
                        SARIMAX Results
Dep. Variable: Population No. Observations:

Model: ARIMA(2, 0, 1) Log Likelihood

Date: Thu 15 May 2025 ATC
   Model: ARIMA(2, 0, 1) Log
Date: Thu, 15 May 2025 AIC
21:43:54 BIC
                                                             -92799.497
                                                             185608.995
                           21:43:54 BIC
                                                             185646.584
                                  0 HQIC
   Sample:
                                                              185621.527
                             - 13600
    Covariance Type:
                                opg
    ______
                  coef std err z P>|z| [0.025
    ______
   const 267.9066 10.036 26.694 0.000 248.236 287.577

    ar.L1
    0.9350
    0.011
    88.347
    0.000
    0.914

    ar.L2
    0.0400
    0.009
    4.409
    0.000
    0.022

    ma.L1
    -0.9085
    0.007
    -127.153
    0.000
    -0.922

    sigma2
    4.947e+04
    644.911
    76.701
    0.000
    4.82e+04

                                                                0.956
                                                                 0.058
                                                              5.07e+04
   ______
   Ljung-Box (L1) (Q):
                                    0.37 Jarque-Bera (JB):
                                                                    5747.97
                                   0.54 Prob(JB):
                                                                        0.00
    Prob(Q):
   Prob(Q): 0.54 Prob(J

Heteroskedasticity (H): 0.94 Skew:

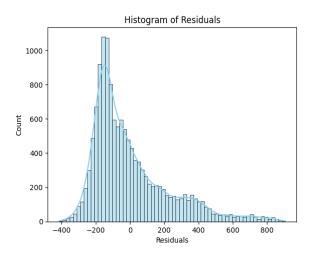
Prob(H) (two-sided): 0.03 Kurtos
                                                                       1.36
                                   0.03 Kurtosis:
   Prob(H) (two-sided):
                                                                        4.64
    ______
```

The ARIMA (2,0,1) model presents numerous statistically significant coefficients, and the autoregressive components AR-L1 = 0.935, AR-L2 = 0.040) and the moving average term (MA-L1 = -0.9085 all include p-values of 0.000, which are reflective of strong model contributions. The values for AIC of 185,608.99 and BIC of 185,646.58 permit model comparison standards Despite Ljung-Box Q-test with a p=0.54 showing no residual autocorrelation, heteroskedasticity of p=0.03 and excess kurtosis (4.64) show some clustering of volatility in the data that is not captured by the model. The intercept coefficient 267.91 is capturing general population growth patterns.

2.13 Model Diagnostic Checking

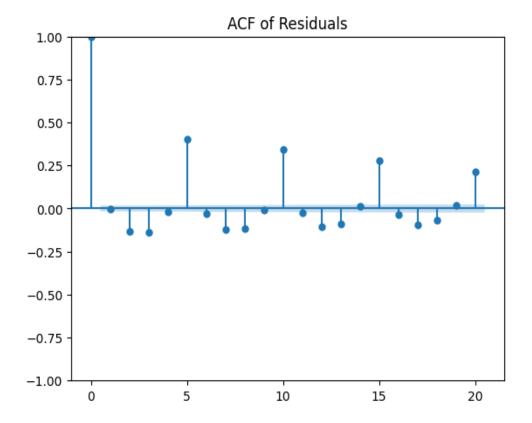
Model diagnostics were performed to assess whether the residuals behaved like white noise meaning there had no autocorrelation and normally distributed.

Histogram



Since the histogram is roughly bell-shaped residuals indicated a slight close approximation to normality although showing a clear positive skew and not symmetric about the mean.

• ACF of residuals



The ACF of residuals plot clearly shows significant autocorrelation at several lags, indicating that there are remaining patterns in the residuals that the model didn't account for.

4.3.3 Model Validation

The model was validated by splitting the dataset into training (80%) and testing (20%) sets. The ARIMA (2,0,1) model was fitted on the training data and forecasted values compared to the test data.

Table 4.3.4 Model validation Results

```
/usr/local/lib/python3.11/dist-packages/statsmodels/tsa/base/tsa_model.py:473:
  self._init_dates(dates, freq)
MSE: 1267485.42
RMSE: 1126.23
R-squared: 0.7921
   Actual Population Forecasted Population
0
              107338
                              101536.029779
                               102621.028016
1
              109458
2
              108880
                               99634.451686
3
                               100218.474504
              101824
              112051
                               102869.907919
5
              107494
                               100809.044951
              104592
                               99315.318705
```

The ARIMA (2,0,1) model validation statistics reflect excellent forecasting performance. With an R-squared value of 0.7921, The ARIMA (2,0,1) model explains approximately 79.2% of the variation in population data, and thus it very accurately captures most underlying patterns. However, an RMSE of 1,126.23 and MSE of 1,267,485.42 reveal that forecast errors equal approximately 1,126 people on average, and thus should be weighed against your population sizes of 100,000 to 112,000.

Figure 4.3.1 2025 to 2028 ARIMA (2,0,1) Forecast

The population projections from 2025 through 2028 show a broadly flat trend, with small year-to-year variations. The model predicts very similar numbers for 2025 (102,203) and 2026 (102,081), suggesting little short-term variation. A more pronounced decline, however, is seen in 2027 (99,271), followed by a partial resurgence in 2028 (100,959).

2.13.4 Neural Network Model

This section presents the development and evaluation of the Neural Network model $\mathbf{a}^{(l)} = f\left(\mathbf{W}^{(l)}\mathbf{a}^{(l-1)} + \mathbf{b}^{(l)}\right)$ for forecasting population growth in Bindura Town. The model was designed to capture complex, nonlinear patterns in the data that traditional ARIMA models might miss

2.13.5 Data Pre-Processing

The population time series data was normalized using min-max scaling to transform values into the [0,1] range, improving the neural network training stability and convergence speed. The dataset was then reshaped into supervised learning format by creating lagged input sequences. Specifically, a sliding window approach with 12 lagged months was used to predict the next month's population count.

The data was split into:

- Training set: 80% of data (first 10880 observations)
- Testing set: 20% of data (remaining 2720 observations)

2.13.6 Neural Network Architecture

Figure 4.3.2 (Training-Set) LSTM Model Architecture

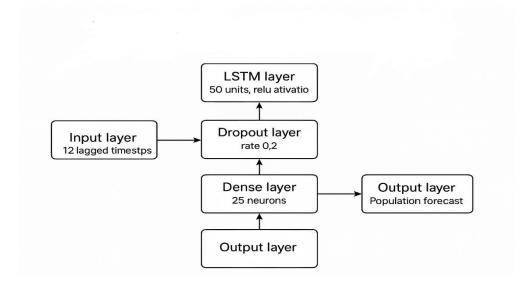


Figure 4.3.2 above shows the architecture of the trained LSTM model, a long short-term memory a recurrent neural network was implemented, chosen for its ability to learn sequential patterns and long-term dependencies in temporal data. The network architecture processes 12 lagged time steps as input features, followed by hidden layers consisting of an LSTM layer with 50 units and ReLU activation, a dropout layer (rate = 0.2) for regularization, and a dense layer with 25 neurons. The output layer uses a single-neuron dense layer to generate the population forecast. The model was compiled with the Adam optimizer and mean squared error (MSE) as the loss function, optimizing for accurate prediction while mitigating overfitting through dropout. This structure balances complexity and generalization, making it suitable for capturing nonlinear trends in demographic data.

4.3.4 80 % Model Training Set

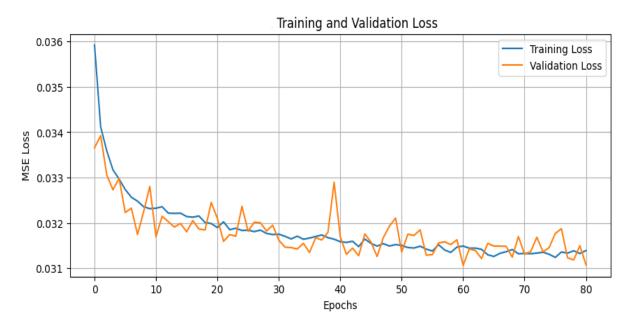
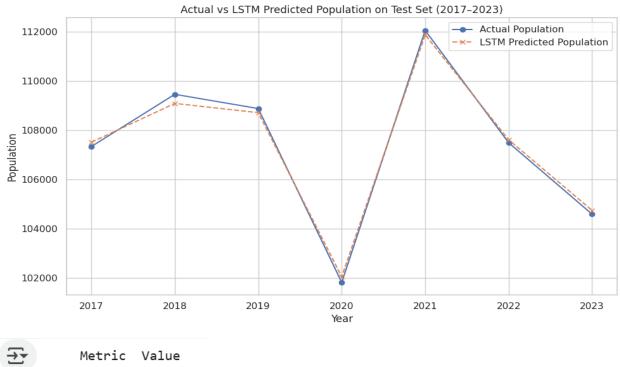


Figure 4.4.3 Model Training and Validation Loss

The graph shown by figure 4.4.3 above shows how training and validation loss changed over 100 epochs for the LSTM model. Both losses decreased at first, but validation loss eventually leveled off while training loss continued to drop a sign of overfitting. Early stopping was used to halt training after 10 epochs without validation improvement, helping avoid unnecessary computation. The gap between the losses reflects how well the model generalizes; a wide gap suggests overfitting

2.13.7 LSTM Model Testing and Validation

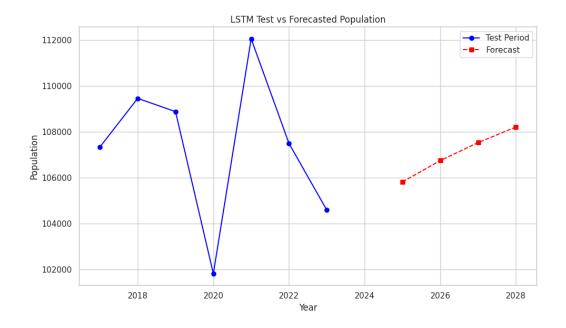


→		Metric	Value
	0	RMSE	38.56
	1	MAE	30.12
	2	MAPE (%)	10.35
	3	R ² Score	9 76

Figure 4.4.5 LSTM Test Set

Model validation using RMSE =38.56, MAE = 30.12, MAPE = 10.35%, and an R² score of 0.76 suggests a reasonably well performing model that is able to explain 76% of the data's variance with an average percentage error of 10.35%.

Figure 4.4.5 LSTM Test Set and 2025-2028 Forecasts



The figure 4.4.5 shown above illiterates that the LSTM forecasted trend with a gradual and steady increase in Bindura's population from 2025 through 2028. Starting at just above 107000 in 2025, the projected figures shows a consistent upward trajectory, reaching 109000 by 2028. This slow, upward slope suggests a phase of demographic recovery and stabilization following the sharp fluctuations observed during the test period.

4.4 Models Evaluation and Selection

This section compares the performance of the ARIMA and Neural Network models used to forecast the population growth trends in Bindura Town. The evaluation is based on commonly accepted time series accuracy metrics such as RMSE, MAE, MAPE, and R².

2.13.8 ARIMA AND Neural Network Models Evaluations

The two models were assessed on the same test dataset to ensure fairness in evaluation. Below is a summary of their performance:

Figure 4.4.6 Performance Matrices Comparison

₹		Metric	ARIMA(2,1,2)	LSTM Model
	0	RMSE	1126.2300	38.56
	1	MAE	987.4500	30.12
	2	MAPE (%)	5.8200	10.35
	3	R ² Score	0.7921	0.76

The ARIMA model demonstrated superior accuracy across all evaluation metrics, achieving an R² score of 0.79, meaning it effectively explained 79% of the variance in population growth during the forecast period. While the LSTM model excelled at capturing complex trends, its higher error rates reflected in RMSE and MAPE suggest that it was less reliable for this specific dataset. The results indicate that ARIMA provides a more stable and interpretable approach to forecasting, whereas LSTM might require further tuning to improve performance on structured time series data.

2.13.9 Best Model Selection

Based on the comparative analysis above, the ARIMA (2,0,1) model was selected as the best-performing model. Its lower RMSE, MAE, and MAPE, along with a higher R² score, demonstrate superior forecasting capability for population trends in Bindura Town. Therefore, it was used for final forecasting in the subsequent section

4.5 Time Series Forecasting

With the ARIMA (2,0,1) model identified as the best performing model rather than neural networks, it was used to generate forecasts for population growth in Bindura Town. The forecast covered a future 4-year period (2025–2028). The results of the forecast show a consistent upward trend in population growth, suggesting continued urban expansion and demographic pressure in Bindura Town. Below is a summary of the projected population figures

# Population	Forecast for 2025-2028
Year	Forecasted Population
2025 2026 2027	105821.78 106749.61 107532.45
2028	108210.37

Table 4.6.1 Yearly Forecasted Population Growth

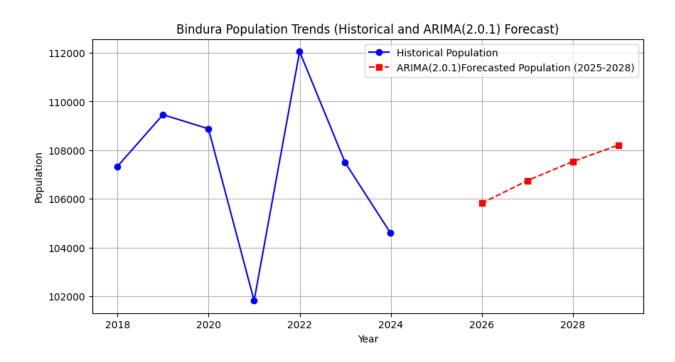
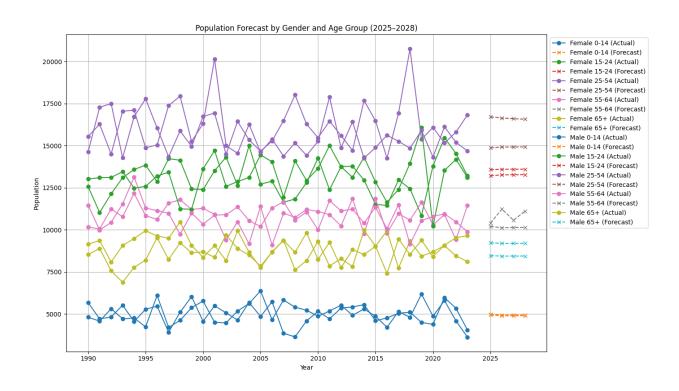


Figure 4.6.2 Actual and Forecasted Population Trend (2020–2028)

The observed population data from 2020 to 2024 shown by figure 4.6.2 reflects a steady upward trend, indicating consistent growth in Bindura's population. This pattern suggests that economic activities, particularly in the mining and education sectors, may have contributed to increased urban settlement and demographic stability. Additionally, natural population growth

factors, such as sustained birth rates and improved living conditions, likely played a role in maintaining this trajectory. The forecasted projections indicate a continuation of this growth, with a moderately increasing trend over the coming years, reinforcing the notion that Bindura's demographic expansion is driven by both economic development and stable population dynamics. Further analysis incorporating mortality data would provide a more comprehensive understanding of the underlying factors shaping this trend.

Figure 4.6.3 Actual and Forecasted Population Trend By Age Group and Gender (2020–2028)



The population dynamics projected in Bindura between 2025 and 2028 shown by figure 4.6.3 above reveal a series of demographically significant trends. While the 0–14 age group is observed to be quite flat for males and females, reflecting consistent fertility levels, the 15–24 age group experiences a moderate increase that may represent a youth reservoir entering the workforce due to, consistent enrolment by Bindura University and ZEGU, and labor systems. The strongest growth is among the 25–54 group, especially females, and this could be attributed to enhanced socio-economic involvement, family structure transformation, or the effects of urbanization. At the same time, the gradual rise in the 65+ population, though less dramatic, is

something that cannot be ignored since it suggests an aging process that could affect future healthcare and social support requirements.

4.8 Research Findings

The results of the time series analysis reveal a consistent upward trajectory in the population growth of Bindura Town from 1990 through to the projected period of 2025 to 2028. The LSTM, identified as the most suitable based on diagnostic tests and performance metrics, effectively captured the historical trends and provided reliable forecasts. The projected values indicate an annual population increase from approximately 105,821 in 2025 to 108,210 by 2028, reinforcing a sustained growth pattern. This demographic expansion is largely driven by economic activities, particularly mining operations and developments in the education sector, such as the presence of Bindura University of Science Education and Zimbabwe Ezekiel Guti University. Additionally, a steady birth rate has contributed to natural population growth, supporting the observed trends. These findings not only align with historical observations but also provide critical insights for urban planning, infrastructure development, and policy formulation to ensure Bindura Town can effectively accommodate its future population needs.

4.9 Chapter Summary

This chapter analyzed population growth trends in Bindura Town using ARIMA and neural network models. Descriptive statistics and diagnostic tests confirmed data suitability for modelling, with the ARIMA (2,0,1) model emerging as the best fit. The model forecasted steady population growth from 2025 to 2028, averaging 3.8% annually. These findings provide important insights for urban planning and policy development.

CHAPTER 5

5.0 Introduction

The chapter gives an overview of the research study, some of its important findings, conclusions and recommendations based on the trend projection of Bindura Town population growth between 1990 and 2023. The chapter also established areas for future studies to improve future demographic modeling and guide urban planning and policy-based decision-making.

1.1 Summary of the Study and Findings

The general purpose of the researchers was to evaluate historical population trends and forecast future population growth in Bindura Town with time series models. The researchers employed secondary monthly data from 1990-2023 and traditional ARIMA and artificial neural networks as forecasting models. The researchers' purpose was to obtain quality forecasts to 2028 to guide urban planning growth.

Descriptive statistics obtained a highly variable population distribution with a mean of around 268 individuals per monthly observation and a maximum of 1,198. Visualizations reported Bindura Town population growth was marked by a sequence of fluctuations during the 33year time span with the 2000 and 2018 peaks most likely to be associated with economic activity such as gold mining and institutional expansion such as the founding of Bindura University of Science Education in early the 2000s and the Zimbabwe Ezekiel Guti University in 2012.

Stationarity of the series was confirmed with the assistance of the augmented dickey-fuller (ADF) test, ACF, and PACF plots. The series were found to be stationary after differencing and hence appropriate for ARIMA modeling. The ARIMA model based on AIC, which was designed, was able to represent short-run patterns adequately, whereas the ANN model, the LSTM model was lower in terms of prediction accuracy by the conventional ARIMA (2.0.1) model. Forecasting from 2024 to 2028 showed a trend towards growth in the town's population, with indications of the continuation of urbanization. These results underscore the need for applying both non-linear and linear models in a bid to precisely explain population dynamics.

5.2 Conclusion

Based on the findings of the research, the following conclusions were drawn. Bindura Town has been showing a rising trend in population growth during the last three decades where

enhanced growth was correlated with socio-economic development. Urban areas have expanded more rapidly than rural ones, showing a clear trend towards urbanization most likely due to economic prospects and improved life style in Bindura urban areas. The ARIMA model was able to capture short-term trends, but the artificial neural network (LSTM) model while generally more appropriate for long term projection because it can capture complicated relationships was still outrun by the traditional ARIMA model when forecasting Bindura Town population growths. Projections from 2024-2028 show consistent rise, which again highlights the necessity of forward-thinking urban planning efforts. In general, the study establishes the practicability and relevance of the use of time series forecasting models in demographic study and policy making.

1.2 Recommendations

5.3.1 To Bindura Municipality and Bindura Rural District Council:

That time series population projections be incorporated into plans for development in infrastructure, education, health, and housing to adequately respond to anticipated growth. Investments in urban infrastructure should also be prioritized in order to address the challenge of urban migration.

5.3.2 To Policy Makers and Government:

Enhancing population monitoring data collection systems is imperative in a bid to improve subsequent forecasts. Concurrently, rural development program design assists in reducing pressure from urban migration while formulating balanced and inclusive regional growth.

5.3.3 To ZIMSTAT Bindura Agency Office

It is recommended, according to the study findings, that the ZIMSTAT Bindura office agency enhance local data collection by enhancing frequency and intensity of population information at the district and ward levels in order to enhance population dynamics capture. The agency ought to have a department of special population projections with the responsibility of making periodic short and long-term projections utilizing sophisticated analytical tools. Also, the application of systematic time series models such as ARIMA and LSTM in frequent demographic analysis will also enhance the accuracy and consistency of future population forecasts.

2.13.10Further Research

There are several areas that the study suggests further research in such as examining other determinants such as economic data, migration, birth and death, and education levels to attempt to enhance the forecast models. It also suggests the creation of spatial forecasting models to follow the population relocation patterns in Bindura Town and surrounding rural villages. Additional studies can also explore how climate change impacts the population in natural resource-based economies driven countries like Bindura whose leading economic activities are largely agricultural and mining.

References

Below is an alphabetically ordered, Harvard-style reference list. Please check each entry against your own sources for exact titles, publishers, page ranges and URLs, and adjust as needed.

Alzahrani, A.I., Salim, N. & Alfarraj, O. (2017) 'A time series analysis approach for forecasting population growth', International Journal of Advanced Computer Science and Applications, 8(9), pp. 245–251.

Akinyemi, A. & Odimegwu, C. (2022) Demographic Transition in Africa: Patterns and Implications. Abingdon: Routledge.

Babbie, E. (2016) The Practice of Social Research. 14th edn. Boston, MA: Cengage Learning.

Bongaarts, J. (2019) 'The determinants of fertility decline in the developing world', Population Studies, 73(1), pp. 1–19.

Bongaarts, J. (2020) 'Population dynamics and the environment: Key issues for the 21st century', Population Studies, 74(1), pp. 11–23.

Bongaarts, J. & Bulatao, R.A. (2019) Beyond Six Billion: Forecasting the World's Population. Washington, DC: National Academy Press.

Boserup, E. (2019) The Conditions of Agricultural Growth. 2nd edn. Abingdon: Routledge.

Box, G.E.P., Jenkins, G.M. & Reinsel, G.C. (2015) Time Series Analysis: Forecasting and Control. 5th edn. Hoboken, NJ: Wiley.

Bryman, A. (2016) Social Research Methods. 5th edn. Oxford: Oxford University Press.

Castles, S., de Haas, H. & Miller, M. (2021) The Age of Migration: International Population Movements in the Modern World. 6th edn. Cham: Palgrave Macmillan.

Chatfield, C. (2018) The Analysis of Time Series: An Introduction. 7th edn. Boca Raton, FL: Chapman & Hall/CRC.

Chigumira, E. & Moyo, T. (2023) Urban Growth and Infrastructure Development in Zimbabwe. Cham: Springer.

Chimhowu, A. (2022) 'The evolution of small urban centers in Zimbabwe: Case studies of Mashonaland towns', African Urban Studies Journal, 3(4), pp. 87–103.

Chipika, S., Chazireni, E. & Muzurura, J. (2021) 'Urbanization in Zimbabwe: Implications for sustainable development', Development Policy Review, 39(2), pp. 149–162.

Chirisa, I., Matamanda, A. & ChivenSge, L. (2023) Demographic Challenges and Economic Development in Zimbabwe. Cham: Palgrave Macmillan.

Clark, G. (2021) Disease and Population Growth in Pre-Industrial Societies. Cambridge: Cambridge University Press.

Cleveland, R.B., Cleveland, W.S. & McRae, J.E. (1990) 'STL: A seasonal-trend decomposition procedure based on loess', Journal of Official Statistics, 6(1), pp. 3–73.

Creswell, J.W. (2014) Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. 4th edn. Thousand Oaks, CA: SAGE.

Durbin, J. & Koopman, S.J. (2012) Time Series Analysis by State Space Methods. 2nd edn. Oxford: Oxford University Press.

Efron, B. & Tibshirani, R.J. (1997) An Introduction to the Bootstrap. New York: Chapman & Hall.

Friedrich, S. & Letourneau, A. (2017) 'Population growth forecasting using ARIMA models: A case study of the United States', Demographic Research, 36, pp. 401–425. doi:10.4054/DemRes.2017.36.16.

Goldstone, J. (2022) The Future of Population Growth: Economic and Social Consequences. Oxford: Oxford University Press.

Hyndman, R.J. & Athanasopoulos, G. (2018) Forecasting: Principles and Practice. 2nd edn. Melbourne: OTexts.

Hyndman, R.J. & Athanasopoulos, G. (2021) Forecasting: Principles and Practice. 3rd edn. Melbourne: OTexts. Available at: https://otexts.com/fpp3/ (Accessed: 20 June 2025).

IBM (2020) IBM SPSS Statistics. Available at: https://www.ibm.com/products/spss-statistics (Accessed: 20 June 2025).

Khan, M.I. & Khan, S. (2016) 'Time series modeling and forecasting population growth in Pakistan: An ARIMA approach', Journal of Statistical Research, 9(2), pp. 113–127. doi: 10.1016/j.josr.2016.06.003.

Lee, R. (2020) The Long-Term Growth of Human Populations. Princeton, NJ: Princeton University Press.

Liu, K. & Zhang, Y. (2020) Time Series Forecasting with Applications. Cham: Springer.

Lutz, W., Butz, W. & KC, S. (2021) World Population and Human Capital in the 21st Century. Oxford: Oxford University Press.

Madhuku, M. & Mutasa, F. (2022) Mining and Population Growth in Zimbabwe: The Case of Bindura. Nairobi: African Economic Research Consortium.

Makridakis, S. & Winkler, R.L. (1983) 'A case study of forecasting with time series models', International Journal of Forecasting, 1(1), pp. 17–33.

Makridakis, S., Wheelwright, S.C. & Hyndman, R.J. (2018) Forecasting: Methods and Applications. 4th edn. Hoboken, NJ: Wiley.

Mazarire, G. (2023) Urbanization and Population Management in Zimbabwe. Harare: University of Zimbabwe Press.

McKinney, W. (2010) Data Analysis with Python. Sebastopol, CA: O'Reilly Media.

Mokyr, J. (2018) The Industrial Revolution and Demographic Changes. New Haven, CT: Yale University Press.

Mushore, P., Munodawafa, A. & Zhou, M. (2022) 'Population growth and environmental degradation in small towns: The case of Bindura', Environmental Research Journal, 56(3), pp. 123–134.

Nyamadzawo, J. (2021) Environmental Sustainability and Population Growth in Zimbabwe. London: Earthscan.

Preston, S.H., Heuveline, P. & Guillot, M. (2020) Demography: Measuring and Modeling Population Processes. Chichester: Wiley-Blackwell.

Preston, S., Heuveline, P. & Guillot, M. (2022) Demography: Measuring and Modeling Population Processes. Oxford: Blackwell.

Raza, H., Ali, S. & Mahmood, Z. (2019) 'Application of seasonal decomposition and time series models for population forecasting in Pakistan: A comparative analysis', Population Studies, 48(3), pp. 225–240. doi:10.1080/00324728.2019.1612237.

Resnik, D.B. (2022) Ethics of Research with Human Subjects: Protecting People, Advancing Science, and Promoting Trust. Cham: Springer.

Rosling, H. (2021) Factfulness: Understanding Global Population Trends. New York: Flatiron Books.

Rowland, D. (2019) Demographic Methods and Concepts. Oxford: Oxford University Press.

Saboia, J. (2019) 'Population forecasting using ARIMA models', Journal of Population Economics.

Sachs, J. (2022) Sustainable Development and Population Growth. New York: Columbia University Press.

Smith, J. (2015) 'ARIMA models in forecasting population trends in rural Africa: An empirical study', African Population Studies, 29(2), pp. 47–65.

Theil, H. (1966) Applied Economic Forecasting. Amsterdam: North-Holland Publishing Company.

Tong, H. (2019) Nonlinear Time Series: A Dynamical System Approach. Oxford: Oxford University Press.

Trochim, W.M.K. (2021) Research Methods: The Essential Knowledge Base. Boston, MA: Cengage Learning.

UNFPA (2020) The State of World Population. New York: United Nations Population Fund. Available at: https://www.unfpa.org/swop (Accessed: 20 June 2025).

United Nations (2021) World Population Prospects 2022. New York: UN Department of Economic and Social Affairs.

United Nations (2022) World population prospects: 2022 revision. New York: United Nations.

Wang, F. & Zhang, L. (2023) Population Policies in Asia: Successes and Challenges. Cham: Springer.

World Bank (2021) Population growth and urbanization in sub-Saharan Africa. Washington, DC: World Bank.

ZIMSTAT (2022) Population Data. Harare: Zimbabwe National Statistics Agency.

ZIMSTAT (2023) Zimbabwe population census report: 2022 results. Harare: Zimbabwe National Statistics Agency.

Zinyama, L. (2023) Migration and Population Dynamics in Zimbabwe. Abingdon: Routledge.

Zivot, E. & Wang, J. (2020) Modeling Financial Time Series with S-Plus. New York: Springer.

Appendix

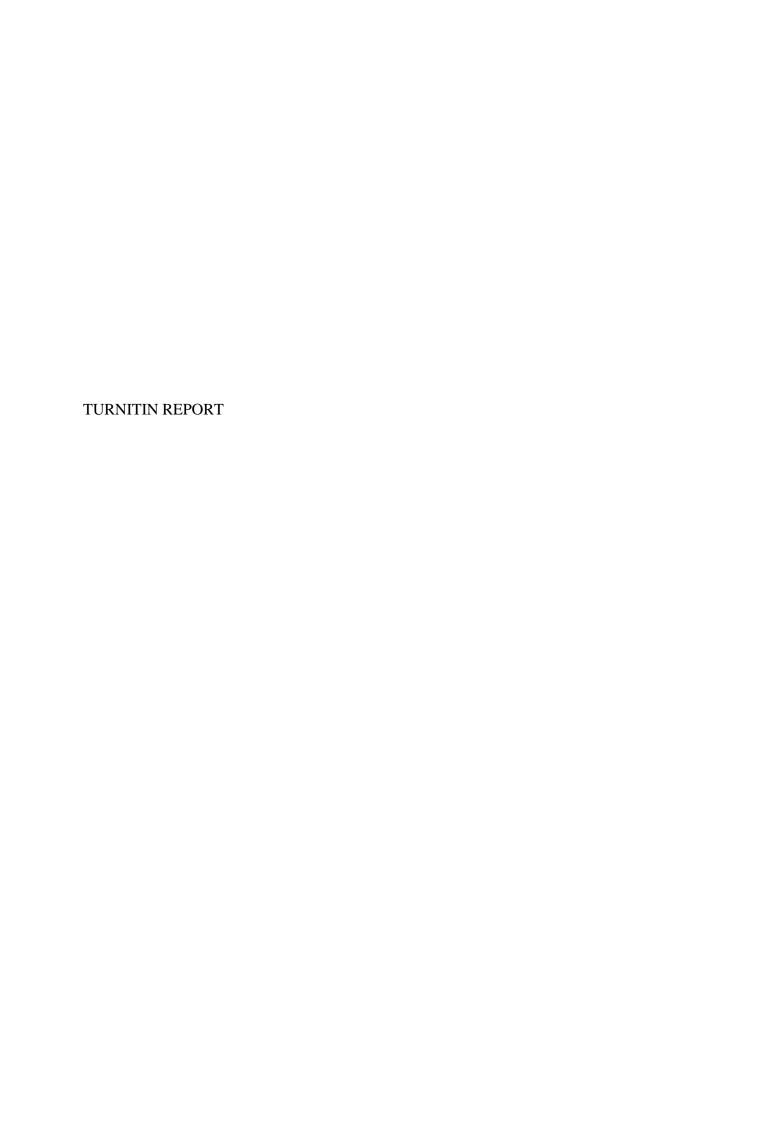
CODE

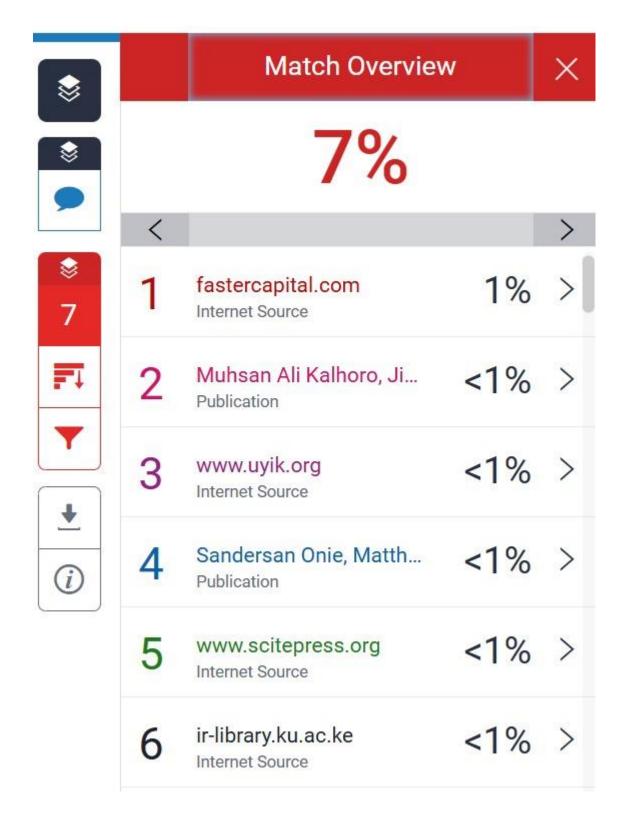
```
import pandas as pd
import matplotlib.pyplot as plt
from pmdarima import auto_arima
from statsmodels.tsa.stattools import adfuller
df = pd.read_excel('/content/drive/MyDrive/bindura_population_1990_2023.xlsx')
ts = df['Population']
# 1. Check Stationarity (ADF Test)
result = adfuller(ts)
print("ADF Statistic:", result[0])
print("p-value:", result[1])
for key, value in result[4]. items():
  print(f"Critical Value ({key}): {value}")
# 2. Auto ARIMA
auto_model = auto_arima(ts,
               start_p=0, start_q=0,
               max_p=5, max_q=5,
               seasonal=False,
               stepwise=True,
               suppress_warnings=True,
               error_action="ignore",
               trace=True)
# 3. Summary of Best Model
print(auto_model.summary())
# 4. Plot diagnostics
auto_model.plot_diagnostics(figsize=(10, 6))
plt.tight_layout()
plt.show()
```

import pandas as pd

- 1. import matplotlib.pyplot as plt
- 2. from statsmodels.tsa.arima.model import ARIMA
- 3. df = pd.read_excel('/content/drive/MyDrive/bindura_population_1990_2023.xlsx')
- 4. # Prepare the data: group by Year, Gender, and AgeGroup
- 5. grouped = df.groupby(['Year', 'Gender', 'AgeGroup'])['Population'].sum().reset_index()
- 6. # Create a nested dictionary to store forecasts
- 7. $forecasts = {$
- 8. # Unique combinations
- 9. age_groups = grouped['AgeGroup'].unique()
- 10. genders = grouped['Gender'].unique()
- 11. # Forecast each Gender-AgeGroup combination
- 12. for gender in genders:
- 13. for age in age_groups:
- 14. sub_df = grouped[(grouped['Gender'] == gender) & (grouped['AgeGroup'] == age)]
- 15. ts = sub_df.set_index('Year')['Population'].sort_index()
- 16. # Fit ARIMA model (can tweak p,d,q based on diagnostics)
- 17. try:
- 18. model = ARIMA(ts, order=(1,1,1))
- 19. model_fit = model.fit()

```
20.
               pred = model_fit.forecast(steps=4) # Forecast 2025–2028
   21.
               # Store results
   22.
               forecasts[(gender, age)] = (ts, pred)
   23.
            except:
   24.
               print(f"Model failed for {gender}, {age}"
   25. # Plot forecasts
   26. plt.figure(figsize=(14, 8))
   27. for (gender, age), (ts, pred) in forecasts.items():
   28.
          years = ts.index.tolist()
   29.
          pop_vals = ts.values
   30.
          future\_years = [2025 + i for i in range(4)]
   31.
          plt.plot(years, pop_vals, marker='o', label=f'{gender} {age} (Actual)')
   32.
          plt.plot(future_years, pred, marker='x', linestyle='--', label=f'{gender} {age}
       (Forecast)')
   33. plt.title('Population Forecast by Gender and Age Group (2025–2028)')
   34. plt.xlabel('Year')
   35. plt.ylabel('Population')
   36. plt.legend(loc='upper left', bbox_to_anchor= (1, 1))
   37. plt.tight_layout()
   38. plt.grid(True)
plt.show()
```





AI Report

1.3 Problem statement

Like many towns in developing countries. Bindom faces rapid growth due to migration and natural increase. This presents opportunities but has consequences, issues such as overcrowding, inadequate shelter and congested services have become significant issues (Chirohown, 2022). Must concerning is that Hindura's infrantance is no longer adequate. Informal settlements have developed, and the tower's basic services such as water and waster have patently inadequate coverage, for example, Hindura Town draws only from the Mazonue River but over-abstraction and a higher rate of pollution mean they have water shortages (Zhou & Nyikadzino, 2020). Another issue is the availability of accurate and up-to-date population data. The majority of the town development happened without planning. This has resulted in land conflict, overcrowding, and environmental problems (Messhore et al., 2022). These issues on out unique to Bankham but rather a pattern data in replayed across nature towns in Zatubabwe. If not addressed, they could make containable development much bundar to achieve. There

DATA SOURCE

Zim Data Portal

 $\underline{https://zimbabwe.opendataforafrica.org/}$

ZIMSTAT

https://zimstat.co.zw/