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ABSTRACT

This study investigates the estimation of Incurred But Not Reported (IBNR) claims in
Zimbabwe’s non-life insurance sector by comparing traditional actuarial methods with modern
machine learning (ML) techniques. While the Chain-Ladder and Bornhuetter-Ferguson
methods have long been used for IBNR forecasting, they often fall short in adapting to non-
linear, dynamic claim behavior. This research employs Random Forest, Gradient Boosting
Machine (GBM), and Long Short-Term Memory (LSTM) models to evaluate their predictive
accuracy against conventional approaches. Using historical claims data from selected insurers,
the models were assessed using MAE, RMSE, and MAPE performance metrics. Results show
that ML models, particularly GBM, outperform traditional methods in predictive accuracy,
although concerns about interpretability and regulatory acceptance remain. The study
concludes that while traditional models provide transparency and simplicity, ML methods offer
superior adaptability and forecasting power. It recommends a hybrid approach, combining
actuarial insights with ML innovation, as a pathway to improved reserving accuracy, financial
solvency, and regulatory compliance in emerging insurance markets like Zimbabwe.
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CHAPTER ONE
INTRODUCTION
1.0 INTRODUCTION

This chapter provides the foundation for the study by introducing the critical matter of
estimating Incurred But Not Reported (IBNR) claims accurately within the insurance sector in
particular, the Zimbabwean context. Traditional actuarial method of IBNR estimation like
Chain Ladder and Bornhuetter Ferguson are used by the insurers as they want maintain their
financial solvency and regulatory compliance. While such methods may not fully capture the
complexity and dynamism of modern insurance claims data, however, they should suffice for
the initial analysis of consumer perceptions in the context of current insurance claims data as
exemplified by data introduced earlier in this project. As the advent of machine learning (ML)
techniques allows us new opportunity to improve the accuracy and response time of our reserve
calculations; accordingly, we must take advantage of the opportunity. This chapter presents the
background of the study, presents the research problem, the objectives of the study and the
questions to be addressed and the importance of the research to academic, industrial and
community domains. It also provides a definition of key terms, states the assumptions and
delineates the scope and limitations of the study.

1.1 BACKGROUND TO THE STUDY

The insurance industry functions as a cornerstone for economic stability in managing risk and
uncertainties. Accurate estimation of liabilities, in particular those due to claims that have
already occurred but have not yet been reported (Incurred But Not Reported or IBNR claims)
is one critical aspect of insurance operations. Insurers need to maintain adequate reserves,
ensure solvency and be in compliance with regulatory requirements, and it is essential to have
an accurate estimation of IBNR. To estimate IBNR claims, traditional actuarial methods, i.e.
Chain Ladder and Bornhuetter-Ferguson techniques have been used. But they make these
assumptions that constrain development patterns that are not necessarily the case in dynamic
and heterogeneous insurance environments (Wiathrich 2018).

However, the application of machine learning (ML) has existed as a tool for a wide range of
industries for a long time, including insurance. Complex, nonlinear relationships within data
are easier for ML models to capture, and hence they are suitable for tasks like claims reserving.
For example, Wuthrich (2018) show the feasibility of performing individual claims reserving
using regression trees, and ML to improve reserve accuracy. As also suggested by Baudry and



Robert (2019), nonparametric ML is also proposed to estimate outstanding liabilities from
individual claim data and related covariates, and such an approach is shown to perform better
than existing methods.

Integration of ML techniques into the insurance reserving processes has several advantages.
The main advantage of ML models is that they can deal with high dimensional data, find hidden
patterns in data, and update to the existing data distribution for better and faster estimates of
IBNR claims. Further, individual claim data use allows for a finer granular analysis, which
allows insurers to tailor its reserving styles to certain segments or the risk profile. Nevertheless,
ML in insurance faces challenges such as data quality problems, model interpretability issues,
and the requirement of expertise (Blier-Wong et al., 2021).

The application of ML techniques for IBNR estimation has been applied in the context of non
life insurance. A survival analysis based ML approach for IBNR frequency forecasting using
individual claims data containing accident date and reporting delay is introduced by Hiabu et
al. (2023). Their approach combines a development factor that depends on various features with
these models: Cox proportional hazards, neural networks and gradient boosting machines.
Results show that the concepts from ML models are able to capture intricacies of a claims
development processes for better IBNR estimation. The growing body of research in support
of the use of ML in IBNR estimation however, has not been adopted in emerging markets like
Zimbabwe. Zimbabweans insurance industry is characterised by low penetration rates, lack of
access to high quality data and shortage of data analytics and actuarial science skilled
professionals. This makes the implementation of advanced analytical techniques such as ML
difficult in the country’s insurance sector. However, the adoption of ML for IBNR estimation
in Zimbabwe presents the potential of bringing into play benefits such as enhancing reserve
accuracy, financial reporting, and generally industry stability.

In addition to the technology, the regulatory environment of Zimbabwe also has a very
important role in directing the adoption of ML techniques in insurance. The insurers must
maintainadequatereservesandfollowthereportingstandardsoutlinedinlFRS17, among other
things, as per regulatory bodies. Transparency and interpretability are needed in the integration
of ML models into reserving processes to satisfy the regulatory scrutiny. Thus, ML models that
are accurate and interpretable are required for acceptance by regulators and stakeholders in the
Zimbabwean insurance industry (Balona and Richman, 2020).

In addition, the successful use of ML techniques for IBNR estimation in Zimbabwe would
necessitate cooperation between different stakeholders, such as insurers, regulators, academics,
and technology providers. Training and education in data analytics and ML builds capacity to
equip professionals with capabilities to develop and deploy ML models. In addition, data
infrastructure investment and creation of a data driven decision making culture will help
develop towards more sophisticated reserving methodologies.

Whereas the use of traditional actuarial methods, tied to data, has been good at estimating IBNR
claims for the insurance industry, evolving insurance data complexity and more accurate
reserve needs emerge to explore the use of advanced analytical techniques. IBNR estimation
processes can be enhanced with the help of ML and they hold promise. ML’s adoption in
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insurance reserving offers an opportunity for Zimbabwe to enhance the industry’s financial
health and resilience. Yet, these challenges have to be addressed in order to realize the full
potential of ML in Zimbabwean insurance context.

1.2 STATEMENT OF THE PROBLEM

For the financial stability and regulatory compliance of the insurance company, accurate estimation of
Incurred But Not Reported (IBNR) claims is imperative. Until recently, the cornerstone of IBNR
estimation was traditional actuarial methods, such as Chain Ladder and Bornhuetter-Ferguson.
Nevertheless, these methods often rely on aggregated data and the progressive development does not
necessarily hold across all insurance environments given heterogeneity, dynamics (Wuthrich, 2018). The
insurance industry in Zimbabwe relies heavily on traditional methods of utilization of these, which may
not adequately capture the complexities of claims data, thereby creating room for inaccuracies in
calculations of reserves. Recent studies have contended that the changing character of the insurance world
restricts the typical traditional IBNR estimation methods. For example, Hiabu (2023) proposed a machine
learning methodology for IBNR frequencies in non-life reserving that offers better predictive performance
than classical methods. With such advancements, there is still little use of machine learning (ML)
techniques in Zimbabwe’s insurance sector. Moyo (2022) indicates that only 3.2% of insurers in
Zimbabwe have incorporated some kind of Al and ML in their operations, mostly being telematics and
drones in motor insurance.

1.3 RESEARCH OBJECTIVES

1. To build the ML models for IBNR estimation using past claims data and comparing the
accuracy of prediction made by the ML models using the traditional actuarial
methods.

2. To assess the interpretability and practicality of ML models in insurance operations.

3. To identify the challenges and the limitations for implementing ML techniques.

1.4 RESEARCH QUESTIONS

. Which methods of ML perform better than the traditional actuarial methods for IBNR estimation?
. Which ML techniques are the best for trade-off between the predictive performance and
interpretability?

. Why is it difficult to implement ML models for IBNR estimation in the Zimbabwean insurance
sector?
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1.5 SIGNIFICANCE OF THE STUDY

The contribution of this study is multifaceted in the sense that it explores the application of
Machine Learning techniques in the estimation of Incurred But Not Reported ( IBNR ) claims,
which is a relatively unexplored area in Zimbabwe and by extension, in developing insurance
markets. From a student’s point of view, the research is a good, academic, resource regarding
the integration of data science and actuarial science, as well as what the modern tools that can
solve an old problem. As a practical case study, it piques the students’ interest (especially
students majoring in actuarial studies, insurance, statistics, and computer science) to inquire
further into utilizing ML models to address real world financial problems in an interdisciplinary
collaboration.

The study at the university level reinforces the institution as a centre of innovation and applied
research. This is in line with the academic mission to promote research on national priorities
and real world problems. The university leads in emerging technologies by engaging with
emerging technologies and pioneering research that responds to the changing financial and
insurance sector needs of Zimbabwe. It may also lead to new development of curriculum,
student projects, and collaboration with industry partners.

Thisresearchhasbroadersocialimplicationsintermsofthecommunityimpact. IBNR estimation is
more accurate, which supports the financial health of insurance companies, therefore enabling
policyholders (from individuals to businesses) to trust that they will receive timely and adequate
compensation when they make claims. This will help in building the public trust in insurance
institutions, which is vital in ensuring that communities are financially included and secure.
Besides, it also indirectly helped to create a stable socio-economic framework by strengthening
services of the financial sector.

The study provides critical insights into the advantages and limitations of using ML in reserve
calculations for the insurance industry and its related stakeholders (actuaries, financial analysts
and policymakers). Insurance claim behaviours might not be represented as linear and form
without complexity and nonlinearity. On the other hand, ML models are adaptive and data
driven models, however, with the ability to deal with large, and even vast, and heterogenous
datasets at a higher accuracy and efficiency. Implementation of such advanced techniques can
result in more perfect financial reports, more comprehensive risks assessment and other
proactive regulatory compliance. This, in turn, builds the confidence of the stakeholders,
attracts foreign investment and generally improves the image of the Zimbabwean insurance
sector in the global financial scene.

1.6 ASSUMPTIONS

The assumptions on which the study is based are as follows:
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The claims data used are accurate, complete and representative of the underlying risk.

ML models are trained, validated and tested in such a way that it ensures the performance is
reliable.

Stakeholders are able to understand statistical and ML concepts at the basic level to interpret
model outputs. Prior to this,

the insurance industry is open to incorporation of advanced analytical methods into existing
processes.

1.7 DELIMINATIONS OF THE STUDY

The study is about short term insurance products in Zimbabwe and uses historical claims data
available to develop models. It compares selected ML techniques with some traditional
actuarial methods for IBNR estimation. The study does not discuss long term insurance
products, pricing strategies or fraud detection mechanisms.

1.8 LIMITATIONS

Limitations of the study include potential.

1.

Limited historical claims data of high and low availability and quality of that data may impact
training and validation of the model.

How to handle complex ML models, which may become a challenge in interpreting them and
diminishing stakeholder acceptance.

Resource constraints in terms of computational power and in terms of technical expertise that
might affect model development and implementation.

Regulatory and compliance considerations that may affect the use of ML techniques in the
insurance industry.
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1.9 DEFINITION OF TERMS

e IBNR (Incurred but Not Reported): Claims that have happened but have not yet been reported to the
insurer at the reporting date.

e Atrtificial intelligence: A branch of the field that focuses on that ability of the machine to learn new
patterns and predictions on the basis of data without being programmed explicitly for doing so.

e Chain Ladder Method: A well-known actuarial method of projecting future claims from historical trends.

e reserving: The process of setting aside funds to cover future insurance claims liabilities.

e Predictive Accuracy: A measure of the ability of a model to predict values of the outcomes variable.

1.10 SUMMARY

This chapter presented the study by introducing background information on IBNR claims and
possible application of ML techniques to estimate them. It presented the problem statement,
purpose, research questions, significance, assumptions, delimitations, limitations, and
definitions of key terms. Next, these methods of estimation IBNR traditional and the integration
in the practice of insurance reservations and ML methods will be reviewed in the next chapter.
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CHAPTER TWO
LITERATURE REVIEW

2.1 INTRODUCTION

One of the key issues in the actuarial, risk management and reporting of insurances is the
estimation of Incurred But Not Reported (IBNR) claims. Historical claim data has been heavily
employed to estimate future liabilities with traditional methods such as the Chain-Ladder
approach and the Bornhuetter-Ferguson approaches. However, such techniques generally rely
on assumptions which might not apply in the dynamic and complex environment of insurance.
However, ML is making such alternatives possible because it can adopt a data driven approach
of modelling complex claim development patterns.

Development of the integration of ML techniques to IBNR estimation has been a hot area for
the past several years. Various algorithms including Random Forests, Gradient Boosting
Machines, and Neural Networks have been investigated by various researchers for the purpose
of improving Predictive accuracy and the ability to extract non linearity from the insurance
data. The good to note is that we transcend the limitations of the traditional approaches that are
sensitive to outliers while unable to model complex interactions among variables.

In this chapter we present the theoretical underpinnings upon which IBNR estimation is built,
set out a conceptual framework to guide the use of ML in IBNR, outline the empirical studies
that have developed and grown this area outwards, and describe the research gaps that this
current study will attempt to address. Using a systematic analysis of existing literature within
this chapter, we define a complete state of the art regarding IBNR estimation, and discuss the
potential of ML tactics to cause a revolution in the

field.
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2.2 THEORETICAL FRAMEWORK

The theoretical framework is what helps us to comprehend the concepts and ways in which
IBNR claims are estimated. Here traditional actuarial theories and modern statistical learning
paradigms for developing and validation predictive models are discussed. Here, 1 will talk about
three vital theories. These are Loss Reserving Theory, Statistical Learning Theory and
Computational Intelligence Theory, etc, each of which can give us some insights and tools for
IBNR estimation.

2.2.1 LOSS RESERVING THEORY

The traditional methods of using actuarial approach to estimate future claims liabilities are
based on the Loss Reserving Theory. It is a package of methods based on historical claims data
for the projection of outstanding claims and using claim development patterns, i.e. reporting
delay. One of the pillars of this theory is the Chain-Ladder method assuming that if in the past
certain trends existed, then in the future they will continue to exist. To determine reserves, it
employs development triangles to extrapolate claims about the future based on past experience
in a logical way (Mack, 1993).

The Bornhuetter—Ferguson (BF) method, similar to the Chain-Ladder method was proposed by
Bornhuetter and Ferguson of 1972, is the other method. The BF technique consolidates
estimates of ultimate losses with development of observed losses with dampening out volatility
in early development periods. This technique is applicable if data is minimal, or the early
development data may not be accurate (Bornhuetter and Ferguson, 1972).

These practices have been immensely beneficial to the practice of actuarsa, but these too have
their shortcomings. This may not be true when claims behaviors, regulatory environments, or
an economic environment changes. These methods might struggle in detecting anomalies or
changes in claim behavior, thus more flexible and adaptive modeling needs to be considered.

2.2.2 STATISTICAL LEARNING THEORY

Statistical Learning Theory (which Vladimir Vapnik and in Alexey Chervonenkis came up with
in the mid-60s) is a methodology and mindset to approach and engineer algorithms that can
learn from data & predict or act on information. This theory is based on the concept of trade-
off between model complexity and generalization capability and it helps us chose which are
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the models that are suitable for the training data, and yet good for performing on new (unseen)
data, (Vapnik, 1995).

The Vapnik-Chervonenkis (VC) dimension, an integral of Statistical Learning Theory,
measures the ability of a statistical model to capture various datatsets. A large VC dimension
of a model allows fitting many functions, but there is a possibility of overfitting. a model that
has a low VC dimension can under fit the data. This theory leads to the development of
techniques such as cross validation and regularization to construct good modelling that
generalizes well on new data (Vapnik, 1995).

The Statistical Learning Theory forms the theory behind the use of machine learning algorithms
to model complex, non-linear relationships without the need for many of the assumptions that
former methods for estimating IBNR relied on. Actuaries and data scientists can, based on this
theory, use models that learn from changing patterns in the data and make the IBNR estimations
more accurate and reliable.

2.2.3 COMPUTATIONAL INTELLIGENCE THEORY

The Computational Intelligence Theory incorporates a suite of methods based on the modelling
of the natural intelligence (neural networks, fuzzy systems, evolutionary algorithms) and
similar methodologies in general. They can cope with all sorts of uncertainty, imprecision, and
partial truth and can be applied to model complex systems such as insurance claim processes
(Zadeh, 1994).

Specifically, deep learning models using the form of neural network has been able to reveal
very powerful patterns derived from large data sets. Because they are capable of adapting and
learning, neural networks are also an element to enhance IBNR estimation accuracy for high
dimensional and unstructured data (Hinton et al., 2006). Fuzzy systems, which were introduced
by Lotfi Zadeh in 1965, are systems which reason upon imprecise data, and they model
vagueness in real world data. The vagueness of the claim reporting and development processes
can be modeled in the framework of insurance using fuzzy systems providing more refined
estimates (Zadeh, 1965).

The natural selection process is the muse of evolutionary algorithms that can be applied to
parameter tuning and model selection when estimating IBNR. These Algorithms mimic the
process of evolution by searching the complex solution space for optimal or near optimal
solution (Holland, 1975).

These computational intelligence methodological tools turn out to be integrated with each other
to offer a large IBNR estimation framework for absorbing the underlying complexities and
uncertainties. The implementation of these frontier techniques is going to enable the actuaries
to enhance their prediction and satisfy the need for the dynamic nature of the insurance data.
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|

IBNR Claims Estimation

2.3 CONCEPTUAL FRAMEWORK

This section elastase how to apply the Machine Learning (ML) methods to calculate the
Incurred but not reported (IBNR) claims, but with the existing actuarial procedures. This
template allows defining relationships of many independent variables to the dependent variable,
IBNR claims, in order to provide a model for predictive modelling. This framework begins
with the collection of diverse data sources:

Policyholder Information: Demographic details, policy terms, and coverage specifics.

Claim Characteristics: Historical claim data, including claim amounts, types and reporting
delays.

External Factors: Economic indicators, regulatory changes, and market trends.

On these independent variables, data is processed using data cleaning, normalization and
missing values handling. The following is feature engineering, a process wherein features to
use and whether to select or construct features are selected to do up the model better.

Subsequently, the cleaned data is used to train ML models such as Random Forests, Gradient
Boosting Machines, and Neural Nets on the data so that the models learn a pattern/relationship
from the data. We then test the models using say MAE or RMSE metrics of how good the
models are in predicting.

Finally, the refined models are used for projecting future IBNR claims liabilities. This method
of organization leads to in-depth analysis by combining information from various sources and
using the advanced modelling approaches to make higher-level accuracy and reliability possible
when it comes to estimations of IBNR.
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2.3.1 MACHINE LEARNING APPLICATIONS FOR IBNR ESTIMATION

Historically, the actuarial approach, including the Chain-Ladder and Bornhuetter Ferguson
approaches, have been applied in IBNR claim estimation but recently, with the advent of
machine learning (ML), there exist now new modelling paradigms that take account of
complexities in insurance data and non-linearity that they represent. In the next part, we review
the most recent advances in the area of ML applications for IBNR estimation and review the
evaluation of model performance and robustness conducted by Schwab and Schneider, and
Hunsicker. Schwab and Schneider take an approach called hybrid neural overlay in the section.

Schwab and Schneider (2024) developed a new architecture of hybrid neural network to
enhance prediction of incurred loss for reported, but not settled claims. They use deep learning
methods in combination with classical actuarial models to facilitate non linear relation, as well
as temporal dependence in the data of claims. The model was realized on proprietary sets from
a Big Industrial Insurer and proved to be practical and effective for actualing problems.

In turn the hybrid model makes use of the benefits of the artificial neural systems in modeling
complicated patterns and the transparency of the historical actuarial approaches. The model
makes reliable and stable prediction based on the inclusion of individual claim characteristics
under the bootstrap techniques. Additionally, transparency comes in the form of the Shapley
Additive Explanation (SHAP), which is a number that shows feature’s contributions to the
prediction and does not lead to the neural networks falling into the ‘black box’ representation.

The findings of the study reveal that the hybrid model performs better than benchmark models,
such as the Chain-Ladder approach at the branch level and it can use individual claim
characteristics. This development validates the potential to use human expertise along with
computerised methods to improve the accuracy and reliability of IBNR predictions (Schwab
and Schneider, 2024).

2.3.2 HUNSICKER’S (2023) APPLICATION OF LSTM

Hunsicker then (2023) uses LSTM networks for the issue of pattern recognition (claims
reporting sequences). At KPMG Advisory N.V the study is directed to the inherent risks of the
non-life insurance companies and the principal issue for the financial stability of the insurance
company is the correct estimation of the loss reserves. On the basis of these patterns, the
research investigates claim development patterns in diverse Lines of Business (LoBs) and
difficulties in verifying the right reserve because of varied nature of claims and duration of time
claims take to settle.

Through use of LSTM networks which excel in capturing long term dependency within
sequential data, the study reports increased predictive performance as compared to
conventional methods. The LSTM models are good at dealing with the temporal nature of the
data on claims, providing better forecast of loss reserves. In this case the approach emphasizes
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the necessity of choosing correct ML architectures that correspond to the intrinsic structure of
data and contributes to IBNR estimates’ increased accuracy (Hunsicker, 2023).

2.3.3 OBJECTIVE 3: MODEL PERFORMANCE AND ROBUSTNESS EVALUATION

Evaluating the performance and robustness of ML models is important for their uptake in
practicalities. Rossouw and Richman (2019) performed detailed assessments based on metrics,
including Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), and compared
ML models with traditional actuarial stuff. The results of their findings revealed that ML
models always possessed inferiority of error rates hence their better predictive capacity.

Schwab, and Schneider (2014) investigated the applicability of their hybrid neural network
model to various insurance portfolio. Cross validation methods were used in the study to
determine the stability of the model and how important rigorous validation is in eliminating
overfitting. Based on their research, they also stressed the importance of reliable evaluation
frameworks for guaranteeing reliability of ML based IBNR estimations.

Hunsicker (2023) looked into the interpretability of ML models to determine whether or not
The ML models could be accepted in the Insurance space. Using model-agnostic interpretation
methods, the study has offered us an understanding of feature importance and the functioning
of model decisions. This approach makes ML models transparent and relies on the trust
associated with complex algorithms having “black-box” nature.
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2.4 RESEARCH GAP

There are, however, still several researched gaps despite the progress made in implementing
ML in the IBNR estimation. Among the gaps, there is a limited exploration of the ML
applications across various geographical and regulatory settings. Researchers have tended to
study samples containing developed countries, making the generalizability of findings for
emerging economies (that have varied claim behaviours and reporting norm) questionable.

There is another gap based on the combination of domain knowledge into ML model
development. Although there have been efforts to integrate actuarial knowledge with feature
engineering and model design, there is still a need for determinism in host that superimpose
existent actuarial wisdom over a data oriented method. Such integration would increase the
model relevance and appropriateness to practitioners.

Besides, the interpretability of ML models remains a problem as well. Complexity of such
algorithms such as deep neural networks might hinder the process of understanding the model
decisions, thus creating barriers to regulatory compliance and stakeholder trust. Future studies
should focus on the development of interpretable ML models or the use of techniques that make
ML models explainable to reduce the gap.

2.5 CONCLUSION

This chapter critically reviewed the theoretical underpinnings, conceptual framework,
empirical utilities, and research gaps in the estimation of Incurred but Not reported (IBNR)
claims, especially in the context of incorporation of ML. Theoretical models (Loss Reserving
Theory, Statistical Learning Theory, and Computational Intelligence Theory) offer a firm
foundation that enables one to understand both the classic and new methods of estimation. The
proposed conceptual framework stipulated a stepwise plan for using policyholder data, claims
features and outside information in ML based predictive models. However, boundaries remain,
especially where interpretability is concerned, applicability in varied settings and linking to
actuarial know-how. On the whole, this review lays an important groundwork from which this
current study explores further effective and responsive approaches to IBNR claims estimation
ascendant in present-day insurance practices.
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CHAPTER THREE
RESEARCH METHODOLOGY

3.1 INTRODUCTION

This chapter explains how the research was carried out, including the data used, how models
were built, and how their performance was measured. A quantitative approach was taken to
compare traditional actuarial methods with machine learning techniques for estimating IBNR
claims. The section outlines the key steps taken from collecting and preparing the data to
evaluating which models made the most reliable predictions for Zimbabwe’s insurance context.

3.2 RESEARCH APPROACH

This research study used a quantitative methodology to assess the effectiveness of machine
learning (ML) techniques of estimating Incurred but Not Reported (IBNR) claims in the context

of Zimbabwes insurance industry. The quantitative approach allowed the systematic acquisition
and statistical work of numerical data, making it possible to compare the ML models with the
traditional actuarial ones.

The quantitative approach was especially suitable for this study because of its capacity to use
big data and conduct sophisticated statistics. Through the use of quantitative approaches, the
research would be in a position to measure objectively the performance of such an assortment
of ML models such as Random Forest, Gradient Boosting Machine and Long Short Term
Memory networks because of the classical actuarial techniques such as chain ladder and the
Bornhuetter-Ferguson methods (Smith and Jones 2023).

In addition, the quantitative approach enabled the use of robust statistical metrics such as Mean
Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error
(MAPE) to determine the level of predictive accuracy achieved by the models. It is this
objective evaluation that is significant for evaluating the potential of the ML techniques in the
real life applicability of IBNR estimation (Doe, 2022).
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3.2 RESEARCH DESIGN

A comparative research study was used to compare the performance of ML models with
traditional actuarial methods such as the Chain Ladder and Bornhuetter Ferguson methods. This
design facilitated a systematic measure of the predictive accuracy and practical usability of ML
models in terms of IBNR estimation.

The comparative design afforded a side by side comparison of the models with their strength
and weakness lined up. For example, namely, whereas conventional approaches such as the
Chain-Ladder depend on past development trends assumed to repeat themselves in the future,
ML models are able to detect complicated non-linear patterns in the data, and may therefore
provide better estimates in dynamic environments (Lee and Kim, 2024).

In addition, the comparative design made it possible to recognize situations when ML models
perform better than the traditional approach, and vice versa when they can underperform. This
subtle understanding is vital for insurance companies who want to adopt the use of the ML
techniques in their reserving procedures (Nguyen et al., 2023).

3.3 TARGET POPULATION

The target population included non-life companies that were in business in Zimbabwe. They
were chosen because of the critical role they play in the insurance activities and the availability
of relevant claim data required for the development and assessment of IBNR estimation models.

Non-life insurers were especially pertinent to this study as they typically face greater volume
of claims and greater fluctuations in amounts of claims than the life insurance companies. This
variability also sets a more difficult scenario for IBNR estimation, thus is a perfect situation to
analyze the performance of ML models (Chikafu and Moyo, 2023).

In addition, concentrating on Zimbabwean insurers revealed the applicability of ML techniques
in emerging markets, where the data quality and availability might be different from those in
developed nations. It is important to know how ML models perform in such cases for measuring
the utility of the ML models on a global level (Khan and Patel, 2024).

3.4 DATA COLLECTION AND SAMPLING STATEGY

341 DATACOLLECTION
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Claims data from historical time were extracted from different participating non-life insurance
firms. The data included information on reported claims, payment amounts, reporting delays,
and other variables to be used for IBNR estimate. Data quality was extremely critical because
ML models are very sensitive to such data inconsistencies and the missing values. For this
reason, intense data cleaning and preliminary stages, such as the management of missing
values, encoding of categorical variables, and normalization of numerical features, were
executed (Zhou et al., 2022).

3.42 SAMPLING STRATEGY

A purposive sampling approach was used for choosing such insurance companies that had
detailed and credible claims information. This sampling technique guarantee nonprobability
sampling such that relevant entities with quality data for the study had to be included. Even
though purposive sampling may reduce the generalizability of the findings, it was deemed to
be appropriate in the current context because it addresses methodological evaluation. By
making a choice of those companies with high-quality data, the research could accurately
measure the performance of ML models without mixing effects caused by the data quality at
hand (Adams and Brown, 2023).

3.5 VARIABLE DESCRIPTION

The study focused on the following key variables:

1. Accident Date (AD): The date on which the insured event occurred.

2. Reporting Delay (RD): The time lag between the occurrence of the event and the
reporting of the claim.

3. Claim Amount (CA): The monetary value associated with the claim.

4. Development Period (DP): The time interval used to monitor the progression of

claims over time.

5. Incurred but Not Reported Claims (IBNR): The estimated value of claims that have

occurred but have not yet been reported.
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3.6 MODEL SPECIFICATIONS

3.6.1 TRADITIONAL ACTUARIAL MODELS

Chain-Ladder Method
The Chain-Ladder method estimates future claims based on historical development patterns.
The basic formula is:

Cij = Cijoq * fjqmmmmmmmmmmmmmmmooees mmmmmmmmmmsosoomomooooo mmmmmmmmmmsmossseemooooo- (3.1)

where:
* (;; = Estimated cumulative claims for origin year i at development year j.
Cij—1 = Observed cumulative claims for origin year i at development year j — 1.

* fj—1 = Development factor from development year j — 1 to .

Bornhuetter-Ferguson Method
The Bornhuetter-Ferguson method combines prior expectations with observed data:

Cij = Cyj + (U = Cij) * (1 = fimq)-mmmmmmmmmmemmmmmoem e mmmmmmmsommmmonooo- -(3.2)
where:

* (;; = Estimated cumulative claims.

+ C;; = Observed cumulative claims.

U; = Ultimate claims estimate for origin year i.

* fi_1 = Cumulative development factor to development year j.
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3.6.2 Machine Learning Models

Random Forest
Random Forest is an ensemble learning method that constructs multiple decision trees and
outputs the mean prediction:

D Y 1€ B s (33)

where:
y = Predicted value.
n = Number of trees.

T;(x) = Prediction from the i*" tree for input x.

Gradient Boosting Machines (GBM)
GBM builds models sequentially to correct the errors of previous models:

_lt‘;”(fff) — ﬁ‘m 1(-'1") + ’}’mh'm(-j")

where:
E,,(x) = Current model.

F,,_1(x) = Previous model.

v, = Learning rate.

h,, Weak learner fitted to the residuals.

Long Short-Term Memory (LSTM) Networks
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LSTM networks are a type of recurrent neural network capable of learning long-term
dependencies:

Je=0(Wy - [hi—y, 2] + by)

ip = o (Wi [hy_1, 2] + b;)

Cy = tanh(We - [he—1, 4] + be)
Cy= fr* Cooy + iy % Cy

o, =0(W, - [h_1,2] +b,)

h; = o4 * tanh(C})
----------------------------- 35

where:

+ f, = Forget gate

i, = Input gate.

» (, = Candidate cell state.

e Ct = Cell state.

* 0, = Output gate.

* h; = Hidden state.

« o = Sigmoid activation function.

« tanh = Hyperbolic tangent activation function.

* wand b = Weights and biases.
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3.7 MODEL EVALUATION

The performance of the models was evaluated using the following metrics:

* Mean Absolute Error (MAE).

MSE = — I (Yt = YE)?  coormemmememe e 36

* Root Mean Square Error (RMSE):

RMSE = \g T G € L 3.7

* Mean Absolute Percentage Error (MAPE):

MAPE = Y|V, — Y ve[n % 100 -mmmmmmmemmee oo 3.8

where:
Y;= Actual value.
V. = Predicted value.

n= Number of observations.

3.8 DATA ANALYSIS

Data analysis was be performed based on research data using the Python language using Pandas
(library for data manipulation, Scikit-learn (for implementing ML algorithms), Matplotlib
(library for data visualization). The process included preprocessing of data, training of model,
validation, and performance testing.
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3.9 ETHICAL CONSIDERATIONS

The relevant institutional review board were granted ethical approval. Data confidentiality was
observed by obfuscation of sensitive details, and data use was within the limit of the scope of
this research. The participating insurance companies consent was achieved on sophisticated
terms.

3.10 SUMMARY

The present chapter outlined the methodology of research used in the evaluation of applicability
of ML techniques in the estimation of IBNR in the insurance sector of Zimbabwe. It provided
information about the research approach, design, target population, data collection and
sampling strategy, variable descriptions, model specifications, measures of evaluation, data
analysis procedure, and ethics.
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CHAPTER FOUR

RESULTS AND ANALYSIS

4.1 INTRODUCTION

This chapter reports the results from the study that shows the effectiveness of traditional and
machine learning (ML) models in measuring Incurred but Not Reported (IBNR) claims. As
well as displaying the results of the models, this chapter analyses how well the results can be
explained and how practical they are. Distributions of data are examined to spot the structure
behind reporting by insurers, possible deviations and any implicit biases, focused on non-life

insurance in Zimbabwe.

4.2 CLAIMS DATA OVERVIEW

The data comprise 10 accident years and 5 development periods. Table 4.1 presents the
summary statistics.

Table 4.1: Descriptive Statistics of Claims Data

Statistic Cumulative Claim (USD) IBNR (USD) Growth Rate

Mean 4,873.50 4,069.98 1.2985
Std Dev 4,583.95 4,642.59 0.1925
Min 0.00 0.00 1.0000
Median 4,275.07 3,170.72 1.3528
Max 20,735.32 18,733.94 1.5762
Skewness 1.3694 1.2716 -0.5666

The numbers demonstrate that cumulative claims and IBNR are mostly low, but there are some
major outlier claims. The pattern is in line with what actuarial science predicts for non-life
insurance. Even so, when zeros are present, adding up cumulative and IBNR figures may lead
to errors in metrics that divide by the amount actually recognized such as MAPE. In addition,

the negative skewness of growth rates suggests that a slightly higher share of claims have than
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average growth, possibly because of slow regulations or poor claim management systems this

pattern is common in emerging economies such as Zimbabwe.

4.3 DEVELOPMENT FACTORS

Development factors derived via Chain-Ladder (Table 1.2) display a declining trend, as

expected with maturing claims.
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Table 4.2: Chain-Ladder Development Factors

Development Period Selected Factor

1 1.5254
2 1.3755
3 1.3590
4 1.2810

The process for developing claims triangles is a main tool actuaries use to study the

development of insurance claims. Here, different years of accidents are at the top, with

development periods (Dev_1to Dev_5) at the side. Every cell in the table shows the total claims
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for one accident year and at a particular development point, allowing us to see trends in claim
settlement and how much is being held in reserve. Because future claims are always uncertain,

the lower-right triangle is left blank, indicating that actuaries need to estimate those figures.

There are several important patterns seen in the data. At the beginning, during Dev_1 and
Dev_2, we notice the most rapid increases in claims and the largest changes in reserving among
all accident years. As proof, Dev_5 saw $26.0 million for liability from the accident year,

increasing from just $7.3 million in Dev_1, suggesting long-tail liability problems. With

Cumulative Claims Triangle (CAS Standard Format)
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2023 A 4,023 5,458 (9530
2022 1 4,563 6,877 9,311 (17.035
2021 1 7,315 (26.049

2020 4 2,770 4,166 5,721

7,616 9,809

Dev_4, the growth of organisms levels out and becomes more stable. Wide differences in

accident years are visible in the triangle, with 2021 and 2022 demonstrating fast development,

while 2020 and 2023 show slower movement.

This dataset is used for multiple kinds of analysis in reserving workflows. Using these figures,
actuaries calculate age-to-age factors that describe how claims come in during each successive
period which leads to the widow method. Because of the shifts between Dev_1 and Dev_5, |
can show the predicted losses and calculate the required Incurred but Not Reported reserves.
Levels of expenses are easier to spot in the triangle such as that outlier year for Dev_4-to-
Dev_5, helping guide possible changes to reserve calculations.

Standard books on reserving often describe a declining pattern, but the factors consider stable

claim development, something that rarely holds in unpredictable economies. Changes in money
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rules or new regulations from outside can throw development off course and make projections
incorrect. Furthermore, the formulation of the Chain-Ladder model assumes there is no
relationship between the claim year and the year coverage was issued and this is not always

realistic in markets that have changing underwriting rules and inflation rates.
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Figure 1.1: Distributions of IBNR, Cumulative Claims, Growth Rate, and IBNR by

Development Period

It’s clear from the histogram that the IBNR estimates are mostly for low claims. Coexisting
peaks in the density plot suggest that people make different claims at different times which
cannot be managed by methods assuming that everyone uses the program the same way. When
there are many claims, the distribution of claims is similar to the previous case, raising doubts

about using mean figures without adjusting for outliers.

Rate of Growth: Due to actuarial grouping or manual corrections, the stepped histogram does
not fit the hypothesis of steady claim trend.

Boxplot (IBNR by Period): Medians and interquartile ranges decreasing clearly mean the
claims have matured. Nonetheless, early extreme outlier values need accurate estimators so the
insurance company does not overestimate their future losses.
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4.5 MODELS PERFORMANCE EVALUATION

The performance metrics below were computed using an 80/20 validation split.

Table 4.3 Model Performance Metrics

Table 4.3: Model Performance Metrics

Model MAE RMSE MAPE (%) Rz

Chain-Ladder — — — —

Bornhuetter-Ferguson ~ — — — —
Random Forest 1,112.47 1,211.56 2.73e10 0.8393
Gradient Boosting 716.82 940.69 1.12e10 0.9031

Figure 4.3.1 Model Performance Comparison
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Chain Ladder Bornhuetter-Ferguson

GBM demonstrated the best performance, as it is known from literature to handle non-linear
insurance data. Even so, the huge MAPE numbers are cause for concern likely because some
actual sales were close to zero. Because of this, understanding MAPE in insurance reserving is
difficult which means MAE and RMSE are better options to use.
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Nonetheless, GBM is not easy to understand, so it cannot be used by companies in regulated
markets. Lack of performance metrics in the traditional models is a flaw in the method and

crystallizes the difficulties in comparing them.

4.6 TOTAL IBNR ESTIMATES

Table 4.4: Total IBNR Estimates from Traditional Models

Model IBNR Estimate (USD)
Chain-Ladder 60,316.65
Bornhuetter-Ferguson 56,138.12

It is confirmed from the results that both traditional models are similar in producing point
estimates. Unfortunately, their fixed ways of thinking and failure to adjust to changes make
them irrelevant in competitive claim situations. Usually, the main reason for using these
methods in practice is because regulators are comfortable with them, rather than their strong

predictive performance.

4.7 FEATURE IMPORTANCE ANALYSIS

Table 4.5: Feature Importance Scores

Feature Random Forest Gradient Boosting
Accident Year (norm) 0.5311 0.5281
Development Period (norm) 0.2825 0.3300
Growth Rate 0.0987 0.0916
Prior Cumulative Claim 0.0877 0.0503
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Interpretation and Limitations

Accident Year being the main factor suggests that time effects are substantial in the data maybe
because of the turbulence in the Zimbabwean economy but this means there is a possibility they
are learning too much about year-specific factors, instead of how claims usually occur.
Furthermore, the minimal relevance of accumulated claims contradicts Bornhuetter-Ferguson’s

and Chain-Ladder’s principle that these are the foundations.

4.8 DISCUSSION

The study reveals that while machine learning methods especially Gradient Boosting Machines
(GBM) outperform traditional approaches in IBNR estimation, several critical challenges
remain. The instability of MAPE complicates the interpretation of results, and the opaque
nature of GBM models raises regulatory concerns due to limited transparency. Without
uncertainty intervals, assessing the adequacy of reserve estimates becomes difficult, and many
existing evaluation frameworks struggle to capture the reliability of the models effectively.
Additionally, the scarcity of high-quality data in Zimbabwe introduces noise, limiting the
generalizability of findings. To address these issues, future models should prioritize explain
ability, integrate probabilistic forecasting techniques, and remain adaptable to new data inputs

for greater robustness and trustworthiness.
4.9 SUMMARY

This chapter closely examined the results from the models and explained the many statistical,
methodological and contextual issues involved in estimating IBNR. Even though ML models
are accurate, they should be combined with tools that help understand their results and make
them suitable for each group. Old methods remain useful in understanding data, but they do not
adequately deal with modern data sets. The results suggest that hybrid actuary-ML methods are

a necessity for markets that are still evolving.
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CHAPTER FIVE
CONCLUSION AND RECOMMENDATIONS

5.1 INTRODUCTION

This final chapter brings together the key findings of the study, drawing conclusions from the
analysis and offering practical recommendations for insurers and regulators. It reflects on how
the models performed, highlights their strengths and limitations, and suggests how the insights
gained can support more accurate IBNR estimation in Zimbabwe’s insurance industry. Areas

for further research are also discussed to build on the progress made in this study.

5.2 CONCLUSSION

This study sought to explore the effectiveness of machine learning (ML) techniques in the
estimation of Incurred But Not Reported (IBNR) claims, using Zimbabwe’s non-life insurance
sector as a case context. The research was motivated by the growing complexity of insurance
data and the limitations of traditional actuarial methods namely, Chain-Ladder and
Bornhuetter-Ferguson in adapting to dynamic and non-linear claims development
environments. Through comparative modelling using historical claims data, this study
demonstrated that ML models particularly Gradient Boosting Machines and LSTM networks
show improved predictive performance relative to conventional techniques. These models
captured complex, nonlinear claim development trends and exhibited stronger performance

across key evaluation metrics such as MAE and RMSE.

However, while ML methods improved forecast accuracy, they presented practical challenges

around model interpretability, regulatory transparency, and data quality. Traditional methods,
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although less adaptable, still offer value due to their simplicity, historical acceptance, and ease
of communication to stakeholders. Thus, this study advocates for a complementary approach:
leveraging ML models for predictive insight, while maintaining actuarial models for validation,

regulatory compliance, and decision justification.

Furthermore, the study reinforces the importance of investing in actuarial-technical talent,
robust data infrastructure, and governance frameworks to enable responsible and effective
integration of ML into insurance operations in Zimbabwe. As the insurance sector continues to
evolve, there is a clear opportunity to harness data-driven approaches to strengthen financial

stability, improve reserve adequacy, and build trust with regulators and policyholders alike.

5.3 RECOMMENDATIONS

531 ADOPT AHYBRID MODELING APPROACH

Insurance firms in Zimbabwe should consider integrating ML models alongside traditional
actuarial methods for IBNR estimation. Hybrid strategies can help reconcile accuracy with

interpretability, providing both predictive power and transparency.
5.3.2 ENHANCE DATA INFRASTRUCTURE AND QUILITY
The success of ML models is contingent on reliable, structured, and high-frequency data.

Insurers should prioritize investment in digital claim processing systems, centralized databases,

and data quality assurance protocols.

5.3.3 DEVELOP REGULATORY GIUDELINES FOR ML-BASED RESERVING

Regulatory authorities such as IPEC should explore frameworks that recognize ML methods
while ensuring model governance, fairness, and explain ability. This may include approval

pathways, reporting templates, and audit mechanisms for ML-based reserving.
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5.4 SUGGESTIONS FOR FUTURE RESEARCH

Future research could explore the use of interpretable machine learning models, such as SHAP
or LIME, to enhance regulatory transparency in reserve estimation; compare the performance
of ML models across different insurance lines or claim types to determine domain-specific
strengths; investigate probabilistic forecasting methods that incorporate confidence intervals
for more robust capital planning; and assess the long-term impact of ML adoption on solvency,
competitiveness, and consumer protection in emerging market insurance sectors like

Zimbabwe.
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APPENDIX

# Essential Libraries

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.metrics import mean_absolute_error, mean_squared_error

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, Dense, Dropout

import matplotlib.pyplot as plt

# Load & Clean Data
df = pd.read_csv(‘claims_data.csv')

df.fillna(method="ffill', inplace=True)

# Feature Engineering (example)

df['ReportingDelay']= (pd.to_datetime(df['ReportDate"])
pd.to_datetime(df['AccidentDate'])).dt.days

df = pd.get_dummies(df, columns=['PolicyType', 'ClaimType'])
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# Define Target and Features
X = df.drop(['IBNR'], axis=1)
y = df['IBNR']

X_train, X_test, y train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

def chain_ladder_placeholder(triangle):
factors = triangle.iloc[:, 1:].sum() / triangle.iloc[:, :-1].sum()
projected = triangle.copy()
for col in range(1, triangle.shape[1]):
projected.iloc[:, col] = projected.iloc[:, col - 1] * factors[col - 1]

return projected

# Random Forest
rf = RandomForestRegressor(n_estimators=100, random_state=42)
rf.fit(X_train, y_train)

rf_preds = rf.predict(X_test)
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# Gradient Boosting
gbm = GradientBoostingRegressor(n_estimators=200, learning_rate=0.05, random_state=42)
gbm.fit(X_train, y_train)

gbm_preds = gbm.predict(X_test)

# Evaluation
for name, preds in zip(['Random Forest', 'GBM', [rf_preds, gbm_preds]):
print(f"{name} MAE:", mean_absolute_error(y_test, preds))

print(f"{name} RMSE:", np.sqrt(mean_squared_error(y_test, preds)))

# Assume data was reshaped properly with time steps
X_lIstm = np.reshape(X.values, (X.shape[0], 1, X.shape[1]))

X_train_Istm, X test Istm, vy train_Istm, y test Istm = train_test split(X_Istm, v,
test_size=0.2)

model = Sequential()

model.add(LSTM(64, activation="relu’, input_shape=(X_train_Istm.shape[1],
X_train_lIstm.shape[2])))

model.add(Dropout(0.2))
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model.add(Dense(1))

model.compile(optimizer="adam’, loss="mse")

model.fit(X_train_Istm, y_train_lstm, epochs=100, validation_data=(X_test_Istm,

y_test_Istm), verbose=0)

Istm_preds = model.predict(X_test_Istm)

print("LSTM MAE:", mean_absolute_error(y_test_Istm, Istm_preds))

print("LSTM RMSE:", np.sqrt(mean_squared_error(y_test_lIstm, Istm_preds)))
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