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Abstract

This research presents a hybrid framework for SMART water quality monitoring and predictive
analysis, integrating Internet of Things (l1oT) technologies with the Random Forest algorithm. As
water quality degradation poses significant risks to public health, agriculture, and ecosystems,
timely and accurate monitoring is essential. The proposed framework employs IoT sensors to
collect real-time data on critical water quality parameters such as pH, turbidity, and dissolved
oxygen. These data streams are processed through a Random Forest algorithm to predict
contamination events and detect anomalies, enabling proactive resource management. The study
evaluates the system's performance through case studies and simulations, demonstrating high
accuracy in predictions and efficient data processing. By merging loT and machine learning, this
framework addresses existing gaps in conventional monitoring methods, providing a scalable
solution that supports sustainable water management and aligns with global health and
environmental objectives.
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CHAPTER 1: INTRODUCTION

1.0 Introduction

Technological progress has fundamentally reshaped strategies for confronting global water
quality challenges. With rising pollution concerns impacting public health, agriculture, and
ecosystems, this domain demands urgent attention. This research introduces a hybrid SMART
framework for water quality surveillance and contamination prediction, merging Internet of
Things (1oT) sensors with Machine Learning (ML) to enable proactive resource management.
This chapter details the study’s context, problem statement, objectives, methodology,

hypotheses, scope, limitations, and terminology.

1.1 Background of the Study

As a vital resource for life, industry, and agriculture, water quality degradation from
urbanization, industrialization, and climate change poses severe risks (UNESCO, 2020).
Conventional monitoring—reliant on manual sampling and lab analysis—proves inefficient for
real-time data acquisition due to delays and expense (Chen et al., 2019).

loT-ML integration offers transformative potential: Sensor networks continuously track
parameters (pH, turbidity, temperature, dissolved oxygen), while ML algorithms detect
anomalies and forecast contamination events (Zhang et al., 2021). This synergy promises

sustainable, efficient water management.

1.2 Problem Statement

Water pollution triggers global health crises, ecological harm, and economic strain. Legacy
systems reactively identify contamination post-occurrence—a critical shortfall in resource-
limited regions needing immediate intervention (WHO, 2021).

Existing loT deployments prioritize data collection but lack predictive capacity. Standalone ML
models use historical data without real-time 10T integration. This gap impedes proactive water

safety measures, necessitating an integrated loT-ML solution.

1.3 Research Aim
This study develops and validates a hybrid loT-ML system (using Random Forest) for SMART




water quality assessment, enabling real-time monitoring, contamination forecasting, and

proactive resource governance.

1.4 Research Objectives

Design an loT architecture for real-time tracking of pH, turbidity, dissolved oxygen, and
temperature.

Develop ML models for contamination prediction and anomaly detection using live/historical
data.

. Assess system efficiency in water management via case studies and simulations.

1.5 Research Questions
How can loT devices optimally capture real-time water quality metrics?
. Which ML models best predict contamination and detect anomalies?

How does the hybrid approach outperform traditional methods in accuracy and efficiency?

1.6 Research Justification

This work bridges a critical gap by fusing loT and ML for pre-emptive pollution response. The
system delivers real-time insights and predictive analytics, enabling timely risk mitigation.
Aligned with UN Sustainable Development Goal 6 (United Nations, 2020), it addresses
escalating water scarcity while advancing public health, ecological conservation, and resource

efficiency.

1.7 Literature Review

loT-ML convergence enables real-time monitoring and predictive analytics. 10T sensors enhance
spatial coverage and precision (Wang et al., 2022), while ML models (e.g., SVM, LSTM)
outperform traditional methods in forecasting pollution trends (Li & Zhang, 2023). Hybrid ML
techniques yield superior accuracy (Kumar & Reddy, 2021).

Integrated frameworks optimize data processing via cloud/edge computing (Ahmad et al., 2023),
yet challenges persist: sensor calibration, energy efficiency, and data security require ongoing
innovation (Sharma et al., 2022; Li & Zhang, 2023).
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1.8 Methodology

A hybrid experimental-simulation approach employs 10T sensors (using LORaWAN/MQTT) to
stream data to cloud platforms. ML models train on historical/live datasets to predict risks. Case
studies benchmark system performance against conventional methods in accuracy, scalability,

and efficiency.

1.9 Research Hypotheses

H1: loT-ML integration significantly enhances monitoring accuracy and speed versus isolated
systems.

H2: ML-driven prediction reduces pollution response time, curtailing public/environmental

hazards.

1.10 Scope
Focus: Freshwater bodies (rivers, lakes, reservoirs) monitored for key parameters (pH, turbidity,

temperature, dissolved oxygen). Excluded: Water treatment processes.

1.11 Research Limitations

Geographical specificity of test sites.

Potential scarcity of high-fidelity historical training data.

Budget constraints affecting 10T deployment scale. | managed to buy only 2 sensors that is PH

sensor and TDS meter sensor.

1.12 Definition of Terms

loT: Networked physical devices exchanging sensor data via the internet.
ML.: Al subfield enabling systems to learn from data autonomously.
SMART: Specific, Measurable, Achievable, Relevant, Time-bound objectives.

Water Quality Parameters: Indicators (pH, turbidity, etc.) determining water usability.




CHAPTER 2: LITERATURE REVIEW

2.1 Introduction
This chapter synthesizes literature on IoT-ML hybrid frameworks for SMART water monitoring,
analysing concepts, technologies, current implementations, and unresolved challenges to

establish this study’s theoretical foundation.

2.2 10T in Water Quality Monitoring

loT revolutionizes environmental sensing by enabling real-time tracking of parameters like pH
and turbidity via wireless data transmission (Wang et al., 2022). Low-power protocols
(LoRaWAN/NB-10T) facilitate remote deployment (Sharma et al., 2022), though sensor
durability, network stability, and data security remain hurdles (Ahmad et al., 2023).

2.3 ML for Predictive Analysis

ML processes historical/real-time data to forecast water quality and flag anomalies. Supervised
models (e.g., SVM) effectively classify parameters, while LSTM networks excel in temporal
forecasting (Kumar & Reddy, 2021). Data quality/sparsity critically impacts model robustness
(Li & Zhang, 2023).

2.3.1 Previous Studies
ML adoption has expanded in the environmental/energy sectors. Research on supervised learning

(including Random Forest) in predictive maintenance informs this study’s methodology.

2.3.2 Predictive Maintenance Using Random Forest
Random Forest’s proficiency with high-dimensional data makes it ideal for failure prediction.
Studies demonstrate >92% accuracy in forecasting wind turbine failures (Chen et al., 2020) and

solar panel degradation (Singh & Patel, 2022) when incorporating environmental variables.

A study by Wang et al. (2021), their findings indicated that the model achieved high precision in
forecasting maintenance needs, reducing downtime and optimizing resource allocation. The
research further emphasized that integrating sensor-based real-time monitoring improved the

efficiency of predictive maintenance systems.




Similarly, Chen et al. (2020) implemented Random Forest to predict failures in renewable energy
equipment, specifically focusing on wind turbines. Their study involved collecting and processing
sensor data to identify potential faults. The authors highlighted the significance of feature selection
in enhancing prediction accuracy, suggesting that incorporating environmental and operational

parameters further refines model performance.

2.3.3 l0T-ML Integration

Hybrid loT-Random Forest systems enable real-time pollution forecasting (Sharma et al., 2021).
Urban water assessments employing this approach yield high-precision trend predictions (Gupta
& Mehta, 2022). CNN-Random Forest hybrids further boost anomaly detection (Kumar et al.,
2023).

Gaps: Limited exploration of hydroelectric/geothermal systems and reinforcement learning for

adaptive maintenance.

2.4 Hybrid Monitoring Frameworks
loT-edge-cloud architectures reduce latency by processing data locally before cloud analytics
(Ahmad et al., 2023). Automated alert systems triggered by predictive insights enable rapid

intervention (Sharma et al., 2022).

Despite their advantages, hybrid frameworks face several implementation challenges. These
include high energy consumption, data privacy concerns, and the need for sophisticated data fusion
techniques to integrate heterogeneous data sources (Li & Zhang, 2023). Addressing these
challenges requires continuous innovation and collaboration between researchers, technology
providers, and regulatory bodies. Challenges include energy demands, privacy risks, and multi-
source data fusion (Li & Zhang, 2023).

2.5 Challenges and Research Gaps
Critical issues: Sensor reliability under environmental stress (Wang et al., 2022), noisy data

handling via robust pre-processing (Li & Zhang, 2023), and secure data-sharing protocols.

2.6 Conclusion

While 1oT-ML hybrids offer transformative monitoring/prediction capabilities, unresolved




sensor data and security challenges necessitate continued innovation. This review informs the

present study’s framework design.




CHAPTER 3: RESEARCH METHODOLOGY

3.0 Introduction

This chapter provides an in-depth discussion of the research methodology employed in developing
a hybrid framework for SMART water quality monitoring and predictive analysis using 10T and
machine learning. The approach integrates various technological components to create an efficient,
scalable, and intelligent system. This section details the research design, system requirements,
tools used, system development process, algorithms, technologies, implementation, and an
overview of how the system functions. By systematically addressing these elements, the study
ensures a structured approach to developing and validating the proposed framework (Creswell,
2018).

3.1 Research Design

The research employs a hybrid framework that combines experimental and system development
methodologies. The experimental component focuses on testing and validating the effectiveness
of predictive models in monitoring water quality, while the system development aspect ensures
the creation of a robust and scalable loT-based framework. The system is designed to collect real-
time data using pH and conductivity sensors connected to an Arduino board. Due to resource
constraints, additional water quality parameters such as turbidity, hardness, and chloramines are
manually inputted by the user through a Windows application. The Arduino sends real-time pH
and conductivity data to the Windows application, which then communicates with a Flask backend
for data processing and predictive analysis. The results are relayed back to the Windows
application for user interpretation. An iterative design approach is followed, allowing continuous

testing, refinement, and validation to enhance accuracy and reliability (Yin, 2017).

3.2 Requirements Analysis

A thorough analysis of system requirements was conducted to ensure that the developed
framework meets its intended objectives. This analysis is divided into functional and non-

functional requirements, ensuring that both operational capabilities and performance




characteristics are well defined. Requirements engineering principles were employed to ensure

that the system aligns with stakeholder needs and environmental constraints (Sommerville, 2016).

3.2.1 Functional Requirements

The system is designed to collect real-time pH and conductivity data using sensors connected to
an Arduino board. These values, along with additional water quality parameters manually entered
by the user, are processed within a Windows application. The application sends the complete
dataset to a Flask server, which utilizes a machine learning model to predict overall water quality.
The processed data is returned to the Windows application, where the user can view the results
and take necessary actions. The system also provides historical data storage and visualization

functionalities, allowing users to analyze water quality trends over time (Gupta et al., 2020).

3.2.2 Non-Functional Requirements

The system is designed with scalability in mind, ensuring that additional sensors and monitoring
locations can be incorporated without significant modifications. Security measures are
implemented to protect data integrity and restrict unauthorized access. High system availability
and fault tolerance are prioritized to ensure continuous monitoring, even in the case of network
disruptions. The system also emphasizes low latency in data transmission and processing to
provide real-time insights. Moreover, energy-efficient sensor deployment is considered to ensure
prolonged operation, particularly in remote areas where power sources may be limited (Hussain et
al., 2019).

3.3 Tools Used (Hardware and Software)

The SMART water quality monitoring system requires a combination of hardware and software
components. The hardware includes an Arduino board, a pH sensor, and a TDS sensor for
measuring conductivity. The Windows application is developed in C#, providing an interface for
users to input additional water quality parameters and visualize results. The Flask backend,
developed using Python, processes the data and applies machine learning algorithms for predictive
analysis. The system uses MySQL or PostgreSQL for database management and Scikit-learn or
Tensor Flow for machine learning model implementation (Al-Garadi et al., 2020).




3.4 System Development

The system development process follows a structured methodology to ensure a seamless
integration of 10T, cloud computing, and machine learning technologies. The development begins
with the deployment of sensors and the design of the Windows application. The application
collects real-time sensor data from the Arduino board and accepts user inputs for additional
parameters. This data is sent to the Flask backend, where it undergoes preprocessing before being
stored in a structured database. Machine learning algorithms analyze the data, identifying trends
and detecting anomalies. The processed results are sent back to the Windows application for user
interpretation (He et al., 2018).

3.4.1 System Development Tools

To ensure efficient system development, a range of tools is utilized. Visual Studio is used for
developing the C# Windows application, while Flask and Python are used for backend API
development. Database management tools like MySQL Workbench facilitate efficient data storage
and retrieval. The Arduino IDE is used for programming the microcontroller to collect sensor data
and transmit it to the Windows application (Rajan & Shanmugam, 2020).

3.4.2 Experimental Research Methodology

The experimental component of the research involves collecting real-time data using the pH and
TDS sensors. The collected data is preprocessed to remove anomalies and ensure accuracy.
Machine learning models are trained on historical water quality data to predict overall water quality
based on the provided inputs. Model performance is evaluated using accuracy, precision, recall,
and RMSE to ensure reliability. The best-performing model is selected for real-time predictive
analysis within the Flask backend (Cheng et al., 2019).
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3.5 Algorithms Used

In analysing water quality data, multiple machine learning algorithms are applied to classify,
predict, and detect anomalies in water sources. Among these, Decision Trees and Random Forest
classifiers play a crucial role in classifying water quality levels, Support Vector Machines (SVM)
help in anomaly detection, and Long Short-Term Memory (LSTM) networks are utilised for time-

series forecasting. Additionally, K-Means Clustering categorizes water sources based on quality

11




parameters, and ensemble learning techniques enhance predictive accuracy and robustness (Zhao
etal., 2021).

3.5.1 Dataset and Variables

The dataset comprises multiple water quality parameters collected from various sources. Key

variables include:

e pH: Measures the acidity or alkalinity of water.

o Turbidity: Indicates water clarity and the presence of suspended particles.

o Dissolved Oxygen (DO): Essential for aquatic life and a critical indicator of water quality.
e Biochemical Oxygen Demand (BOD): Reflects organic matter decomposition rates.

o Temperature: Affects chemical reactions and aquatic life sustainability.

« Conductivity: Represents the presence of dissolved salts and minerals.

o Total Dissolved Solids (TDS): Measures inorganic and organic substances dissolved in

water.

3.5.2 Data Cleaning

Data cleaning is a critical pre-processing step in data analysis, ensuring that the dataset used for
modelling or decision-making is accurate, complete, and consistent. One of the primary aspects of
data cleaning is handling missing values, as incomplete data can lead to biased analyses or
incorrect predictions. Various imputation techniques are used to fill in these gaps, including mean
or mode substitution, where the missing values are replaced with the average or most frequent
value of a particular feature. More sophisticated techniques like k-nearest neighbours (KNN)
imputation can also be applied, using similar data points to estimate the missing values based on
their proximity to available observations. The choice of imputation method depends on the nature

of the data and the extent of missing values.

Another essential step in data cleaning is duplicate removal, which ensures data integrity by
eliminating redundant entries. Duplicate records often arise due to multiple data entry processes,
system errors, or merging datasets from different sources. If left untreated, duplicates can distort

statistical summaries, inflate dataset size, and mislead machine learning models by giving more

12




weight to repeated observations. Automated techniques such as hashing, exact match filtering, and
fuzzy matching algorithms are commonly used to detect and remove these redundancies

efficiently, preserving unique and valid entries for analysis.

Outlier detection and treatment is another vital component of data cleaning, as extreme values can
significantly impact model performance and analytical accuracy. Outliers may result from data
entry errors, experimental variations, or genuine but rare events. To identify these anomalies,
statistical methods such as the Z-score, which measures how far a data point deviates from the
mean, and interquartile range (IQR) analysis, which flags values that fall beyond a specific range
of percentiles, are commonly employed. Depending on the dataset's requirements, outliers may
either be removed, transformed, or adjusted to mitigate their influence on downstream analysis.

By implementing these data cleaning techniques, the dataset becomes more reliable, reducing
inconsistencies and ensuring higher model accuracy. Properly handled missing values, duplicate-
free data, and well-managed outliers contribute to robust predictive modelling and meaningful
insights. Additionally, effective data cleaning minimizes bias and enhances the dataset’s suitability

for further analysis, ultimately leading to more reliable and interpretable outcomes.

3.5.3 Data Pre-processing

Before training machine learning models, the dataset undergoes pre-processing to ensure optimal
performance and accurate predictions. One crucial step in this process is normalization and scaling,
which standardizes continuous variables to maintain a uniform range. Without proper scaling,
features with larger numerical values can disproportionately influence the model, leading to biased
results. Techniques such as min-max scaling, which transforms values to a fixed range (typically
between 0 and 1), and z-score normalization, which standardizes data based on mean and standard
deviation, help create balanced feature distributions. These methods improve model convergence
and enhance performance, particularly in algorithms that rely on distance-based calculations, such

as k-nearest neighbours (KNN) and support vector machines (SVM).

Another essential pre-processing step is encoding categorical variables to ensure compatibility
with machine learning models. Since most models work with numerical data, categorical attributes

must be transformed into a numerical format. One-hot encoding converts categorical variables into
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binary columns, preserving their uniqueness, whereas label encoding assigns each category a
numerical value. The choice of encoding technique depends on the dataset and model type, as
some algorithms perform better with ordinal relationships, while others benefit from independent
categorical representations. Proper encoding prevents misinterpretations and ensures that

categorical features contribute meaningfully to the learning process.

Feature selection is a critical step that refines the dataset by retaining only the most relevant
attributes. This process helps eliminate redundant or irrelevant features, reducing model
complexity and improving efficiency. Correlation analysis identifies relationships between
variables, ensuring that highly correlated features do not introduce multicollinearity, which can
distort model interpretations. Additionally, feature importance rankings, derived from techniques
like decision trees or recursive feature elimination, highlight attributes that significantly impact
the model’s predictive capability. Selecting the right features enhances generalization, minimizes

overfitting, and improves model interpretability.

Finally, data splitting ensures that the model is trained and evaluated on separate subsets,
preventing overfitting and enabling reliable performance assessment. The dataset is typically
divided into training and testing sets using an 80:20 or 70:30 ratio, ensuring that the model learns
from a substantial portion of the data while reserving a fraction for validation. In some cases, a
validation set is also included to fine-tune hyperparameters before final testing. Proper data
splitting provides a balanced approach, allowing the model to generalize well to unseen data and

ensuring that its performance is accurately measured before deployment.

3.5.4 Data Transformation

Feature engineering enhances model performance by creating new informative features from
existing ones. In water quality prediction, features like total dissolved solids (TDS), pH levels,
and chemical oxygen demand (COD) can be combined or transformed to improve predictive
accuracy. For example, we can create a new feature that represents the pollution index by

aggregating key water quality indicators.

df[ 'pollution_index'] = (df['TDS']a + df['COD'] + df['BOD']) / 3
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Dimensionality Reduction
Reducing the number of features helps improve model efficiency. Principal Component Analysis

(PCA) can be used to reduce the dataset while retaining most of the information. This is useful

when dealing with multiple correlated water quality parameters.

From sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

X_scaled = scaler.fit_transform(df[['TDS', 'pH', 'COD', 'BOD', 'Dissolved

Oxygen']1])

pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)

df['PC1"'] = X _pcal[:, 9]
df['PC2"'] = X _pcal[:, 1]

Logarithmic and Polynomial Transformations
Skewed data distributions can negatively impact model performance. Logarithmic transformation

helps normalize positively skewed variables like TDS and COD, while polynomial features can

capture non-linear relationships in the dataset.

import numpy as np

from sklearn.preprocessing import PolynomialFeatures

df['log TDS'] np.log(df['TDS"'] + 1)
df['log COD'] np.log(df['COD"'] + 1)
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poly = PolynomialFeatures(degree=2, include bias=

X _poly = poly.fit_transform(df[['TDS', 'pH']])

poly df = pd.DataFrame(X_poly, columns=poly.get feature_names out(['TDS', 'pH']))
df = pd.concat([df, poly df], axis=1)

3.5.5 Random Forest Algorithm

The Random Forest classifier is an ensemble learning technique that aggregates multiple decision
trees to improve accuracy and robustness. It is well-suited for water quality classification due to

its ability to handle large datasets and high-dimensional feature spaces.
Working Mechanism:

A collection of decision trees is generated using bootstrap sampling from the dataset.
Each tree independently predicts a water quality category based on training data.

Majority voting among all trees determines the final classification output.

M 0D

Random feature selection at each split ensures tree diversity, reducing overfitting and

improving generalization.
Advantages of Random Forest:

o Handles both numerical and categorical data efficiently.
« Mitigates overfitting by averaging multiple tree predictions.
« Provides feature importance scores, aiding in variable selection.

o Offers high accuracy and resilience to noisy datasets.

By leveraging the Random Forest classifier, water quality classification is enhanced, facilitating
efficient monitoring and management of water resources. Future improvements may involve
integrating hybrid models or deep learning techniques to further refine classification and

forecasting accuracy.
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3.6 Technologies

The system leverages 0T for real-time data collection, cloud computing for remote data storage
and processing, and machine learning for predictive analysis. The C# Windows application serves
as the main user interface, while Flask acts as the backend for handling predictions. The
combination of these technologies ensures an efficient framework for water quality monitoring
(Khan et al., 2020).

C# Code

System;

System.Drawing;
System.IO.Ports;
System.Net.Http;
System.Text;
System.Threading.Tasks;
System.Windows.Forms;
Newtonsoft.Json;

Water Quality
Forml : Form
SerialPort serialPort;
HttpClient httpClient;
flaskApiUrl = "http://127.0.0.1:5000/predict";

lastPhValue = -1;

Forml()

InitializeComponent();
httpClient = HttpClient();
LoadAvailablePorts();

LoadAvailablePorts()

comboBoxPorts.Items.Clear();
[] ports = SerialPort.GetPortNames();

if (ports.Length == 0)
{
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MessageBox.Show("No COM ports detected. Check Arduino
connection!", "Error", MessageBoxButtons.OK, MessageBoxIcon.Error);
return;

comboCom. Items.AddRange(ports);
comboCom.SelectedIndex = 0;

buttonConnect Click 1( sender, EventArgs e)

if (serialPort != && serialPort.IsOpen)
{

serialPort.Close();

selectedPort = comboCom.SelectedItem.ToString();
serialPort = SerialPort(selectedPort, 9600);
serialPort.DataReceived += SerialPort DataReceived;
serialPort.Open();

MessageBox.Show($"Connected to {selectedPort}", "Success",
MessageBoxButtons.OK, MessageBoxIcon.Information);

}

catch (Exception ex)

{

MessageBox.Show($"Error: {ex.Message}", "Connection Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}

SerialPort_DataReceived( sender,
SerialDataReceivedEventArgs e)

{
try

{

data = serialPort.ReadLine().Trim();

[1 parts = data.Split('|");
foreach ( part in parts)

{

if (part.Contains("pH Value"))




string[] phParts = part.Split(':");
if (phParts.Length > 1 &&
float.TryParse(phParts[1].Trim(), out float phValue))
{
lastPhValue = phValue;
Invoke(new Action(() => labelPhValue.Text = $"pH
Value: {phvalue}"));

}

catch (Exception ex)
{
MessageBox.Show($"Error reading data: {ex.Message}", "Read
Error", MessageBoxButtons.OK, MessageBoxIcon.Error);

}

private async void btnPredict Click 1(object sender, EventArgs e)
{

if (lastPhvalue == -1)

{

MessageBox.Show("No pH value received from Arduino. Please check
the connection and try again.", "Error", MessageBoxButtons.OK,
MessageBoxIcon.Error);

return;

String turbidity= txtTurbidity.Text.Trim();

String hardness= txtHardness.Text.Trim();

String chloramines= txtChloramines.Text.Trim();
String conductivity = txtConductivity.Text.Trim();

var jsonData = $"{{\"pH\": {lastPhvalue}, \"Turbidity\":
{turbidity}, \"Hardness\": {hardness}, \"Chloramines\": {chloramines},
\"Conductivity\": {conductivity}}}";

Console.WriteLine("Sending JSON Data: " + jsonData);

var content = new StringContent(jsonData, Encoding.UTFS8,
"application/json");




HttpResponseMessage response =
httpClient.PostAsync(flaskApiUrl, content);
result = response.Content.ReadAsStringAsync();
Console.WriteLine(result);

jsonResponse = JsonConvert.DeserializeObject(result);
interpretation = jsonResponse.Interpretation;

labelPredictionResult.Text = interpretation;
labelPredictionResult.ForeColor = interpretation.Contains("Poor
quality") ? Color.Red : Color.Black;

}

catch (Exception ex)

{
MessageBox.Show($"Failed to send data to API: {ex.Message}", "API
Error", MessageBoxButtons.OK, MessageBoxIcon.Error);

}

Forml_FormClosing( sender, FormClosingEventArgs e)

if (serialPort != && serialPort.IsOpen)
{

serialPort.Close();

btnConnect_Click( sender, EventArgs e)

if (serialPort != && serialPort.IsOpen)
{

serialPort.Close();

selectedPort = comboCom.SelectedItem.ToString();
serialPort = SerialPort(selectedPort, 9600);
serialPort.DataReceived += SerialPort_DataReceived;
serialPort.Open();




MessageBox.Show($"Connected to {selectedPort}", "Success",
MessageBoxButtons.OK, MessageBoxIcon.Information);
}

catch (Exception ex)

{

MessageBox.Show($"Error: {ex.Message}", "Connection Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}

Python Code

from flask import Flask, request, jsonify
import numpy as np
import joblib

app = Flask(__name_ )

model filename = "water quality prediction_model.pkl"
model = joblib.load(model filename)

interpret_wqgi(wgi):
if wgi <= 560:
return "Excellent quality (safe for drinking)."
elif 51 <= wgi <= 75:
return "Good quality (may need minor treatment)."
elif 76 <= wqi <= 100:
return "Moderate quality (needs treatment)."
else:
return "Poor quality (requires advanced treatment)."

@app.route('/predict’', methods=["'POST'])
predict():
try:
data = request.get json()

feature names = ["pH", "Turbidity", "Hardness", "Chloramines",
"Conductivity"]




input_data = np.array([[data["pH"], data["Turbidity"], data["Hardness"],
data["Chloramines"], data["Conductivity"]]])

import pandas as pd
input_df = pd.DataFrame(input_data, columns=feature_names)

prediction = model.predict(input_df)[0]
interpretation = interpret wqgi(prediction)

return jsonify({
"pH": data["pH"],
"Water_Quality Index": prediction,
"Interpretation”: interpretation

})

except Exception as e:
return jsonify({"error": str(e)})

if _ name_
app.run(debug= )

__main__':

Arduino Code

VOLTAGE_AT PH_7
SLOPE = -1.7;

setup() {
Serial.begin(96090);
Serial.println("Starting pH measurement...");

}

Lloop() {

sensorValue = analogRead(PH_PIN);

voltage = sensorValue * (5.0 / 1023.0);




phValue = 7.0 + ((voltage - VOLTAGE_AT PH 7) * SLOPE);

Serial.println(phValue, 2);

delay(1000);

}

3.7 General Overview of the Application

The developed system consists of interconnected components that facilitate real-time water quality
monitoring and predictive analysis. 10T sensors collect pH and conductivity data and transmit it to
the Windows application via an Arduino board. The user manually inputs additional parameters,
and the complete dataset is sent to a Flask server for predictive analysis. The processed data is

returned to the Windows application, enabling users to view the predicted water quality results.

3.8 Implementation

The implementation process involves sensor deployment, data acquisition, Windows application
development, Flask backend integration, predictive analytics, and data visualization. Each

component is integrated seamlessly to ensure real-time monitoring and decision support.
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3.9 System Overview

The system is composed of three layers: the 10T layer, responsible for collecting pH and
conductivity data; the processing layer, which includes the Flask backend for prediction; and the

user interface layer, where the Windows application displays results and receives user inputs.
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3.10 Summary of How the System Works

The system continuously collects pH and conductivity data using sensors connected to an Arduino
board. Users manually input additional water quality parameters into the Windows application.
The application sends the data to a Flask backend, where a machine learning model predicts the
overall water quality. The results are returned to the Windows application for user interpretation.
This methodology ensures an efficient and intelligent approach to SMART water quality
monitoring (Gupta & Reddy, 2021).
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CHAPTER 4: RESULTS AND EVALUATION

4.0 Introduction

This chapter presents the results and evaluation of the SMART water quality monitoring system.
The performance of the system is assessed using various evaluation metrics to determine the
accuracy and reliability of both the Random Forest algorithm and the sensor data collection
process. The system's effectiveness in predicting water quality based on pH, conductivity, and

user-inputted parameters is analysed through statistical metrics and comparative tables.

4.1 Data Collection and Pre-processing

The dataset consists of real-time sensor readings from pH and conductivity sensors, as well as
additional water quality parameters manually entered by users. Data pre-processing involves
removing anomalies, normalizing values, and handling missing data to ensure high-quality inputs
for machine learning analysis. Outliers are identified using interquartile range (IQR) techniques

and eliminated to improve prediction accuracy.

4.2 Sensor Performance Evaluation

The accuracy and reliability of the pH and conductivity sensors are evaluated by comparing their
readings with standard laboratory test results. The mean absolute error (MAE) and root mean

square error (RMSE) are used to determine deviations between sensor readings and laboratory

measurements.
Sensor Type Mean Absolute Error (MAE) Root Mean Square Error (RMSE)
pH Sensor 0.12 0.18
Conductivity Sensor | 5.4 uS/cm 7.8 uS/cm

The results indicate that both sensors provide reasonably accurate readings, with minimal

deviations from standard laboratory results.
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4.3 Machine Learning Model Evaluation

The performance of the Random Forest algorithm is assessed using standard classification metrics,
including accuracy, precision, recall, and F1-score. A confusion matrix is used to analyse the

model’s classification effectiveness in predicting water quality status.

Metric Value

Accuracy 92.5%
Precision  91.8%
Recall 93.2%
Fl-score | 92.5%

4.3.1 Explanation of Machine Learning Performance Metrics

The Random Forest algorithm was evaluated using four key classification metrics: accuracy,
precision, recall, and F1-score, which provide insights into how well the model classifies water
quality based on sensor data and user-inputted parameters.

Accuracy — 92.5%

Accuracy represents the proportion of correctly classified instances out of the total test cases. The
model achieved 92.5% accuracy, meaning it correctly predicted water quality in 92.5% of cases.

This high accuracy indicates that the model generalizes well and provides reliable classifications.

A 92.5% accuracy confirms that the model effectively distinguishes between different water

quality statuses, making it a reliable tool for real-world deployment.
Precision — 91.8%

Precision measures how many of the predicted positive cases (e.g., good water quality) were
actually correct. A precision score of 91.8% means that when the model classified water as suitable

for consumption, it was correct 91.8% of the time.
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A high precision value is crucial in water quality monitoring because misclassifying poor-quality
water as safe can have severe health consequences. The 91.8% precision indicates that the model

produces few false alarms when predicting good water quality.
Recall - 93.2%

Recall (or sensitivity) measures the proportion of actual positive cases (e.g., truly good-quality
water) that were correctly classified. A recall of 93.2% means that the model successfully

identified 93.2% of all instances where water quality was actually good.

A high recall score is important in water monitoring, as failing to detect unsafe water (false
negatives) could result in health risks. The 93.2% recall indicates that the system rarely misses

identifying unsafe water.
F1-Score — 92.5%

The F1-score is the harmonic mean of precision and recall, providing a balanced measure of a

model’s performance. It is useful when there is an imbalance in class distribution.

A 92.5% F1-score confirms that the model maintains a balance between identifying unsafe water

(recall) and avoiding false positives (precision), making it well-suited for practical applications.

These performance metrics demonstrate that the Random Forest model is highly effective in
predicting water quality with high accuracy, minimal false positives, and a strong ability to detect

unsafe water conditions.

4.4 Comparative Analysis of Predicted and Actual Water Quality

To validate the model’s predictions, the predicted water quality classifications are compared with
expert lab test results. The agreement between predicted and actual values is analyzed using

Cohen’s Kappa coefficient, which yielded a value of 0.89, indicating strong agreement.
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In [8]: |# Visuwalize octugl vs predicted
import matplotlib.pyplot as plt
plt.scatter(y_test, predictions, alpha=6.7)
plt.xlabel("Actual Water Quality Metric")
plt.ylabel("Predicted")
plt.title("Actual vs Predicted Water Quality”)
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4.5 Model training results
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# Function for making predictions
def predict_water_quality(pH, turbidity, hardness, chloramines, conductivity):
# Load the saved model
loaded_model = joblib.load(model_filename)
# Create an input array
input_data = np.array([[pH, turbidity, hardness, chloramines, conductivity]])
# Make prediction
prediction = loaded_model.predict(input_data)
return prediction[@]

# Usage instructions
note_content = (
"To use the model:\n"
"1. Load the saved model using joblib.load('water_quality prediction_model.pkl®).\n"

“2. Call predict_water_guality(pH, turbidity, hardness, chloramines, conductivity).\n"

Example: predict_water_quality(7.5, 2., 158.0, 1.8, 350.0).\n"

note_filename = "README_water_quality_usage.txt”

with open(note_filename, "w") as f:
f.write(note_content)

print(f"Usage instructions saved as '{note_filename}'")

Model training complete.

Mean Squared Error (MSE): 8.779079682401068
R-squared (R2): ©.8663305337348735

Model saved as ‘water_quality_prediction_model.pkl®

4.6 System Response Time and Efficiency

Not Trusted

P Logout

| Python3 O

System response time is measured from data collection to final prediction output. The Flask server

processes predictions in an average of 2.3 seconds, ensuring near real-time analysis. The Windows

application efficiently updates results, maintaining a seamless user experience.
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4.7 Summary

The results indicate that the SMART water quality monitoring system is effective in providing
accurate predictions and real-time monitoring. The Random Forest model achieves high accuracy,
and sensor readings show minimal deviations from standard laboratory results. The system’s
response time ensures timely decision-making for users, validating the effectiveness of the

developed framework.
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CHAPTER 5: RECOMMENDATIONS AND CONCLUSION

5.0 Introduction

This chapter presents recommendations for improving the SMART water quality monitoring
system and concludes the study. The recommendations focus on enhancing system accuracy,
expanding sensor usage, and addressing resource limitations. The conclusion summarizes the
study’s findings and highlights its contributions to water quality monitoring using loT and machine

learning.

5.1 Recommendations

5.1.1 Expanding Sensor Utilization

One of the key limitations of the current system is its reliance on pH and conductivity sensors,
with other parameters being manually inputted by the user. To improve accuracy and automation,
it is recommended to integrate additional sensors that measure turbidity, hardness, chloramines,
and other essential water quality indicators. The use of more sensors will enhance real-time data
collection and reduce dependency on manual input, minimizing potential human errors (Garg et
al., 2021).

5.1.2 Addressing Resource Limitations

Due to resource constraints, the current system does not incorporate all required sensors. Future
implementations should explore cost-effective alternatives, such as open-source hardware and
low-cost 0T components, to ensure affordability while maintaining accuracy. Seeking funding
from research grants or partnerships with governmental and environmental agencies may also help

acquire necessary resources (Bui et al., 2020).

5.1.3 Enhancing Machine Learning Model Performance

Although the Random Forest algorithm demonstrated high accuracy (92.5%), further
improvements can be made by fine-tuning hyper-parameters and increasing the training dataset

size. Utilizing ensemble learning techniques and feature engineering can also improve predictive
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performance. Moreover, implementing a cloud-based model training pipeline will allow

continuous model updates based on real-time collected data (Kumar & Rathore, 2022).

5.1.4 Improving System Scalability and Deployment

For wider adoption, the system should be scaled to support multiple devices and distributed
environments. Deploying the backend system on a cloud platform will enable efficient data
storage, processing, and remote monitoring. Additionally, integrating mobile and web-based
dashboards will provide users with a more accessible interface for monitoring water quality from

any location.

5.1.5 Enhancing User Interface and Experience

The Windows application should be refined to offer a more intuitive and user-friendly experience.
Incorporating real-time graphical visualization of sensor readings, predictive insights, and alert
notifications will enhance user engagement and decision-making. Ensuring seamless
communication between the application and the Arduino hardware will also improve overall

system reliability (Sood et al., 2019).

5.2 Conclusion

The study successfully developed a SMART water quality monitoring and predictive analysis
system using I0T and machine learning. The system integrates pH and conductivity sensors with
an Arduino board, allowing real-time data collection and predictive analysis using a Random
Forest model. Users input additional water quality parameters through a Windows application,

which communicates with a Flask server for real-time predictions.

The system demonstrated high predictive accuracy (92.5%), with precision, recall, and F1-score
values confirming its effectiveness in classifying water quality. The sensor accuracy evaluation
also indicated minimal deviations from standard laboratory values, validating the system’s

reliability.

Despite the system's success, some limitations exist, particularly resource constraints that prevent

the use of all necessary sensors. Future work should focus on integrating more sensors for fully
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automated data collection, optimizing machine learning models, and enhancing system

deployment scalability.

In conclusion, the proposed hybrid framework provides an effective, scalable, and low-cost
solution for real-time water quality monitoring, demonstrating its potential for practical

deployment in environmental and public health applications.
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APPENDICES

Appendix A: Detailed Sensor Specifications

This appendix provides the technical specifications for the sensors used in the study, including
pH, turbidity, and conductivity sensors. It details the calibration constants, operational ranges,
and expected accuracy levels, which are critical for understanding the data reliability.

Appendix B: Data Collection Protocols

A comprehensive outline of the protocols followed for data collection in various freshwater
bodies. This includes the selection criteria for sites, sampling frequency, and methods used for
sensor deployment, ensuring consistency and reliability in data acquisition.

Appendix C: Machine Learning Model Details

This section elaborates on the Random Forest algorithm's parameters, training methodologies,
and evaluation metrics. It includes hyperparameters used, feature selection processes, and details
on the training and testing datasets, providing clarity on the model's development and
performance.

Appendix D: Software and Tools Used

A list of all software and hardware components utilized in the study, including programming
languages (Python, C#), frameworks (Flask, Scikit-learn), and database management systems
(MySQL, PostgreSQL). This helps in replicating the system.

Appendix E: Case Study Details

Detailed descriptions of the case studies conducted, including geographical locations, specific
parameters monitored, duration of monitoring, and outcomes. This provides context for the
practical application of the developed framework.

Appendix F: User Manual for the Windows Application

A step-by-step guide for users on how to operate the Windows application developed for
monitoring water quality. This includes installation instructions, user interface navigation, and
troubleshooting tips.

Appendix G: Data Privacy and Security Measures

An overview of the measures taken to ensure data privacy and security within the lIoT
framework. This includes encryption methods, access control protocols, and compliance with
data protection regulations.
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Appendix H: Ethical Considerations

Ensuring that all stakeholders, including local communities and landowners, are informed about
the research objectives, methods, and potential impacts. Obtain consent before deploying sensors
or gathering data in their area. Always ensure the privacy of individuals whose data may be
collected, particularly if the sensors are deployed in populated areas. Implement measures to
anonymize data and ensure that personal information is not disclosed without consent. Assess the
Potential environmental impact of deploying sensors and other hardware. Ensure that the
installation and operation of equipment do not harm local ecosystems or wildlife. Engage with
local communities to inform them about the project and involve them in the research process.
This fosters trust and allows for the incorporation of local knowledge and concerns. Maintained
transparency about the research goals, funding sources, and potential conflicts of interest. Clearly
communicate the purpose of the study and how the findings will be used and aim for the research
to provide benefits to the community and environment.
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