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ABSTRACT 

The Trojan mining operation is crucial to the national economy as a major nickel producer, but 

recent trends show declining yields. To address this, a comprehensive study conducted a time 

series analysis of nickel production from April 2013 to March 2023, using ARIMA models to 

predict production from April 2023 to January 2024. The ARIMA model projected that nickel 

production would reach 496.87 tons by January 2024. Using the Box-Jenkins approach and R 

software, the study validated the ARIMA (1, 0, 1) model. Predictions showed an initial increase 

in production from April to July 2023, followed by stabilization with slight fluctuations until 

January 2024. Boosting nickel production depends on timely resource provision, professional 

training, effective mine management, and supportive government policies. Future research should 

consider advanced data analytics methods, such as machine learning and neural networks, for more 

precise predictions. 
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CHAPTER 1 

  

1.0 Introduction  

Mining has been a cornerstone of Zimbabwe's economy, contributing significantly to the nation's 

GDP. It also contributes to foreign exchange, government revenues, capital formation, and 

infrastructure development. According to the 1990 Geological Survey, Zimbabwe is a country rich 

in a variety of minerals and metals. It has substantial reserves of platinum, gold, diamonds, 

asbestos, nickel, coal, chrome, iron, and numerous other minerals. These valuable resources hold 

immense prospects for stimulating economic growth and enhancing overall economic 

development.  

 However, despite the importance of these minerals in Zimbabwe, their potential can be 

overshadowed if mismanaged. In this context, statistical analysis is a valuable tool to understand 

trends, patterns, and factors influencing mineral production. Time series analysis has gained 

significant attention in the mining industry to forecast the production trends of minerals (Bauwens 

& Giot, 2001). Time series techniques, enable users to make accurate forecasts about mining 

production and anticipate possible future scenarios. This facilitates strategic decision-making and 

contributes to more efficient management of mineral resources (Aycaya-Paco,Torres, Vilca-

Mamani, 2023). The mining industry being complex and dynamic can rely on time series for 

accurate data analysis and forecasting to optimize operations, plan resource allocation and make 

strategic decisions.  

 

1.1 Background of the study  

Nickel holds indispensable importance in contemporary industry as a critical metal, playing a 

crucial role in the production of stainless steel, alloys, and other materials essential for various 

sectors, including transportation, construction, and consumer goods (Gunn, 2017). The global 

demand for nickel is increasing due to its growing applications in renewable energy technologies, 

such as electric vehicles and wind turbines (IEA, 2020). As a result, nickel mining has become a 
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significant contributor to the global economy, with a market value of over $20 billion in 2020 

(Grand View Research, 2020). 

Nickel’s physical and chemical properties make it essential in many end-use products. This 

underscores the necessity of predicting mineral production to facilitate future planning. Such 

planning entails preparing for upcoming requirements, including mining equipment, power 

supply, fuel, chemicals, and explosives. The determination of yield holds utmost significance as 

it allows miners to evaluate the costs and benefits of a mine, which informs important decisions 

about whether to expand production or shut down the mine entirely (Claassen, 2013).  

In Africa, nickel mining is a vital sector, with several countries hosting significant nickel deposits. 

The continent accounts for around 10% of global nickel production, with Zimbabwe being one of 

the leading producers (USGS, 2022). Nickel mining is essential to Africa's economic 

development, providing employment opportunities, generating revenue, and contributing to GDP 

growth (African Development Bank, 2020). 

In Zimbabwe, the mining sector is a crucial component of the economy, accounting for over 60% 

of export earnings and 15% of GDP (ZIMSTAT, 2022). Nickel mining, in particular, is a 

significant contributor to the country's economy, with Trojan Nickel Mine being one of the largest 

producers (BNC, 2022). The mine is a major employer and generates substantial revenue for the 

government, making it a vital component of Zimbabwe's economic development (Ministry of 

Mines and Mining Development, 2020).  

Despite its importance, the nickel mining industry faces numerous challenges, including 

fluctuating nickel prices, operational inefficiencies, and external factors like regulatory changes 

and market demands (ICMM, 2020). Accurate forecasting of nickel production is essential to 

optimize production planning, resource allocation, and strategic decision-making (Sari et al., 

2017). Time series analysis has been widely applied in the mining industry to forecast production 

trends and optimize operations (Jiang et al., 2019). However, existing forecasting methods may 

not adequately address the complexities and uncertainties of nickel production at Trojan Nickel 

Mine (Mwanza & Mwale, 2020).  
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This study aims to identify a suitable time series model to forecast nickel production at Trojan 

Nickel Mine, addressing the knowledge gap in accurate forecasting and informing strategic 

decisions to optimize production and resource allocation. The outcomes of this study will make a 

valuable contribution to the  development of effective forecasting methods for nickel production, 

enhancing the sustainability and profitability of the mining industry in Zimbabwe and beyond.  

 

1.2 Statement of the problem  

Despite playing a crucial role in bolstering Zimbabwe's economy, the nickel mining industry, 

particularly Trojan Nickel Mine, faces operational challenges and uncertainties. Fluctuating nickel 

prices, inefficiencies, and external factors such as regulatory changes and market demands affect 

production dynamics. To enhance decision-making and drive sustainable growth, there is a 

pressing need to develop an accurate forecasting model using time series analysis. However, 

existing forecasting methods may not adequately address the complexities and uncertainties of 

nickel production at Trojan Nickel Mine. Therefore, this study aims to identify a suitable time 

series model to forecast nickel production at Trojan Nickel Mine, addressing the knowledge gap 

in accurate forecasting and informing strategic decisions to optimize production and resource 

allocation. 

 

1.3 Objectives of the study  

The paramount objectives of this project are:  

1. To identify a model for forecasting Trojan Mine nickel production  

2. To forecast nickel production patterns using the model for 10 months 

3. To show and explain the Trojan nickel production mine production trend for the past 

1.4 Research questions  

1. Which model will be incorporated into Trojan’s nickel production forecasting?   

2. What will be the future Nickel production at Trojan?   

3. What is the trend of historical nickel production at Trojan?  
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1.5 Significance of the study  

This study holds immense significance for the nickel mining industry in Zimbabwe, particularly 

focusing on the operations at Trojan Nickel Mine. By applying time series analysis models to the 

production data, valuable insights into trends and patterns of nickel production are offered which 

can aid in strategic decision-making. It is also essential for the reader because it can improve 

students’ knowledge of financial time series and serve as a starting point for individuals interested 

in learning more about financial time series in forecasting production or similar topics. 

Furthermore, the research assists other students in evaluating the suitability of college-taught 

theories and putting them into practice.   

 

1.6 Assumptions of the study  

 For this study to be relevant, we assume that the sample selected will represent the Trojan Nickel 

Mine company, data collected from the company is accurate, and tools and methods used to collect 

data are valid and reliable.  

 

1.7 Limitations of the study  

This study's findings are bound by certain limitations. The first one is that ARIMA models used 

to forecast are known to have some potential biases and errors such as overfitting and underfitting 

which could affect the accuracy of the predictions. More so, the results of the model may not be 

perfectly generalizable to other nickel mines as the model is specific to the data and conditions of 

the Trojan Nickel Mine.   
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1.8 Definition of terms  

Time Series 

A time series consists of observations taken at regular intervals that are equally spaced over a 

period (IBM, 2013). In mathematical terms, time series is a sequence of data points usually 

measured at successive intervals, defined as a set of vectors 𝑥(𝑡), where 𝑡 represents elapsed time, 

such as 𝑡 = 0,1,2. ..(Adhikari, 2014). 

 

Forecasting 

Forecasting involves predicting or estimating future events by analyzing past and present data. It 

involves using statistical models, algorithms, and techniques to analyze historical trends, patterns, 

and relationships in data to make predictions about future outcomes (Hermadi et al., 2020).  

 

 Production. 

Nickel production refers to the extraction and processing of nickel ore to obtain nickel metal or its 

various forms, such as nickel powder, nickel cathodes, or nickel alloys (Contreras et al., 2007)  

  

  

1.9 Chapter Summary  

The chapter has provided an overview of the research topic on time series analysis for nickel 

production outlining the background, statement of the problem, research objectives, research 

questions, significance of the study, delimitation of the study, limitations to the study, assumptions 

of the study and definition of key terms with a specific focus on Trojan Nickel Mine as a case 

study. The importance of forecasting nickel mine production through time series was highlighted 

emphasizing accurate predictions for planning and decision-making in the mining industry. 
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                                            CHAPTER 2 

LITERATURE REVIEW 

  

  

2.0. Introduction 

In this chapter, we examine empirical studies and theoretical literature about time series analysis 

and its practical application in analyzing prior research on production. Additionally, this chapter 

explores significant findings in this field and provides an overview of time series analysis. 

 

2.1 Theoretical Literature Review  

2.1.1 Time Series Components  

Time series analysis involves examining four main components: trend, seasonality, irregularities 

or cycles, and random variation (Agbo, 2021). Each element has a distinct influence on the 

observed data, and forecasting can project these patterns into the future. Time series plots provide 

a means to detect diverse patterns, encompassing random fluctuations, trends, level shifts, 

periodic or cyclical behavior, and exceptional observations of these patterns. The trend 

component of a time series offers valuable insights into the overarching long-term trajectory of 

the data. It indicates whether the data is consistently moving upward or downward in a predictable 

manner during each period. The trend may exhibit either a linear or non-linear nature, contingent 

upon the variables under examination. Identifying the trend is crucial as it helps in making 

forecasts and understanding the overall behavior of the data.  

 

Seasonality refers to the occurrence of systematic fluctuations in data that can be attributed to 

specific factors. These variations exhibit regular patterns at fixed intervals, such as monthly, 

quarterly, or yearly. They manifest as recurring patterns within the data. By analyzing the 

seasonality component, we can discern these consistent patterns and make appropriate 
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adjustments to our analysis. Seasonal fluctuations are often observed in data related to sales, 

weather, or stock prices.   

  

The cyclical component, sometimes referred to as irregular cycles, signifies the presence of 

oscillatory movements in the time series that span beyond a one-year timeframe. These 

fluctuations are not periodic and repeat over longer time spans. They involve rises and falls that 

are not easily predictable or explainable. These cycles may not have a fixed duration and are often 

influenced by economic and business cycles. Understanding the cyclical component is important 

for predicting long-term trends and making informed decisions.   

 

Data fluctuations that cannot be ascribed to the trend, seasonality, or cyclical components are 

deemed as random or irregular. These disruptions deviate from the prevailing trend observed in 

the time series data and are characterized by their unpredictable nature. Also known as the random 

or error component, it captures the unexplained variability in the data and is essential for assessing 

the accuracy of our time series models.  By comprehending and accurately measuring these 

components, we can acquire invaluable perspectives on the fundamental patterns inherent in the 

time series data. This knowledge enables us to make informed forecasts and better analyze the 

behavior of the data over time.   

 

 

2.2 ASSUMPTIONS REGARDING TIME SERIES DATA 

2.2.1 Stationary Assumption  

Prior to analyzing time series data, it is crucial to perform stationarity tests. Time series modeling, 

assumes that the data remains stationary meaning its mean, variance, and autocorrelation structure 

are consistent over a period. This assumption is vital to prevent misleading outcomes when 

forecasting time series. To ascertain the absence of trend or seasonality in the data, we can visually 

examine the time series plot. When data is not stationary, methods such as differencing and log 

transformation are used to make it stationary. ADF method is commonly employed to assess the 

presence of stationarity. These tests provide statistical evidence to support the stationarity 
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assumption and guide us in making accurate and reliable analyses and forecasts in time series 

modeling.  

 

  

2.2.2 Normality  

One more assumption that the data must satisfy is that they adhere to a normal distribution. 

Deviation from this assumption can lead to incorrect estimation of parameters or inaccurate 

forecasts. To assess the normality assumption, common tools include histograms, stem-and-leaf 

plots, box plots, P-P plots, Q-Q plots, and plots of the empirical cumulative distribution function. 

Alongside these visual methods, we can also utilize analytical tests that rely on the empirical 

distribution function (EDF) to examine the normality of the data. One commonly used tests is the 

kolmogorov-Smirnov test and it relies on the empirical distribution function to assess the 

normality assumption. 

   

 

2.2.3 Independence  

To guarantee the precision and dependability of our time series analysis, the residuals or 

disturbances must demonstrate independence and the absence of autocorrelation. The Durbin-

Watson test is extensively employed to assess the presence of positive autocorrelation in the 

residuals. Alternatively, we can plot the residuals against the fitted values as another approach. It 

is argued that provided the model is accurate, this graph should appear lacking structure. 

Additionally, the autocorrelation function (ACF) of the residuals can be plotted to assess the 

presence of significant terms. Generally, only around 1/20 of the terms is expected to be above 

±2/n, where n denotes the number of data points used in the time series. By examining these 

diagnostic tools, we can ensure that the residuals meet the assumptions of independence and lack 

of autocorrelation, thus enhancing the reliability and validity of our time series analysis. 
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2.2.4 Homoscedasticity  

To ensure the constancy of variance in residuals, we can examine a scatter plot of the residuals. 

This plot should reveal a rectangular shape around the zero horizontal levels, indicating that the 

variance remains constant. The scatter plot needs to be free from any discernible trends. By 

assessing the scatter plot, we can verify that the assumption of constant variance is upheld, further 

enhancing the reliability of our analysis. 

  

2.3 Examples of Time series data  

Time series data, comprising regularly recorded observations over time, forms an essential element 

in diverse domains including healthcare, mining, and finance. This type of data allows analysts to 

uncover trends, patterns, and relationships that can inform decision-making and forecasting. o 

illustrate the fundamental trend of the data, typically, a time series is depicted through a graph, 

where the observations are plotted against the respective time (Adhikari, 2016). Shown below are 

the two plots of time series data: 

 

 

Figure 2.1: Nickel volume produced by Zimbabwe in 2019 

  

Source: ZIMSTAT 2019 
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Figure 2.2 Corn produced from 1960 to 2023 in Zimbabwe 

  

Source ZIMSTAT 2019 

The first time series is taken from the ZIMSTAT index mineral production and it represents the 

Zimbabwean nickel output index from 2019 to 2023. Second one represents a seasonal time series, 

deemed in Index Mundi and it shows the numbers of corn production in Zimbabwe from 1960 up 

to 2023.  

  

2.4 TIME SERIES MODELS 

2.4.1 Autoregressive Models    

An autoregression is a time series model that predicts future values based on past observations. An 

example of this is the AR(p) model, where p indicates the order. 

                           𝑌𝑡 = ∅0 + ∅1𝑌𝑡−1 + ⋯ ⋯ + ∅𝑝∅𝑡−𝑝 + 𝑎𝑡  

Here, ∅0 represents the constant term, ∅𝑝 are the model parameters, and 𝑎𝑡 is assumed to be a 

white noise series. The benefits of the AR model include its ability to determine the extent to which 

previous values in the time series can explain current values. Autoregressive models compute the 

polynomial likelihood of the following symbol. While this is appealing, it means they won’t be 

able to create a distribution model with difficulty in calculating the next symbol probability.  
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2.4.2 Moving Average   

An MA is calculated by averaging a particular quantity of time series data points surrounding each 

point t, excluding the first and last few terms. This technique is utilized for smoothing time series 

data and for forecasting, but it is only applicable to time series without a trend. An example of a 

MA series of order q denoted as MA(q) 

                𝑌𝑡 = 𝑐0 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 − ⋯ ⋯ − 𝜃𝑞𝑎𝑡−𝑞  

Where 𝑐0 is a constant, 𝑎𝑡 is a white noise series, and 𝜃1, 𝜃2,⋯  𝜃𝑞 are model parameters. One 

advantage of using MA is that it is resistant to outliers, thus it can still give accurate predictions 

even if there are anomalies in the data. However it can not capture sudden changes in the data, 

thus it may not be able to predict sudden spikes or drops in production.  

2.4.3 ARIMA Models  

 The ARIMA model is a time series forecasting technique that integrates the benefits of both 

autoregressive (AR) and moving average (MA) models. The Time series should be differentiated 

until it is stationary, eliminating patterns and seasonal effects. The "explanatory variables" consist 

of lagged values of t and errors, forming an ARIMA (p, d, q) model. 

                           𝑦′𝑡 = 𝑐 + ∅1𝑦′𝑡−1 + ⋯ ⋯ + ∅𝑝𝑦′
𝑡−𝑝 + ∅𝑝𝜀𝑡−𝑝 + 𝜀𝑡 ⋯ ⋯   

 Integration (I) is applied to make a time series stationary. If the series is not stationary, first-order 

differencing (d = 1) or higher-order differencing can be used to achieve stationarity. The general 

formula for differencing is: 

                                  ∆(𝑡) = 𝑦(𝑡) − 𝑦(𝑡 − 1)  

 

 "∆(𝑡)" represents the variance between the present and preceding values in the time series. The 

ARIMA model integrates the historical dependence on past values (AR), reliance on past errors 

(MA), and differentiation to analyze and predict time series. The ARIMA model is recognized for 

its unit-root nonstationary characteristic (Ruey, 2010). ARIMA forecasting offers a significant 

advantage by solely utilizing data from the specific time series under consideration. This 

characteristic proves beneficial when forecasting numerous time series. Additionally, it mitigates 
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potential issues that can arise with multivariate models.  Nevertheless, ARIMA may face 

constraints in predicting extreme values. Despite its proficiency in capturing seasonal patterns and 

trends, forecasting outliers can be challenging due to their deviation from the typical trend 

represented by the model. 

 

2.5 Empirical literature  

Patrícia Ramos, José Manuel Oliveira, and Paula Silva (ND) conducted a study on predictive 

analysis for manufacturing equipment to forecast malfunctions and enable proactive maintenance. 

They compared ARIMA forecasting methods and neural network models using data from a 

continuous monitoring system. The study used the Box Jenkins ARIMA methodology, including 

a Box-Cox transformation for variance stabilization, and cross-validation to find the optimal 

ARIMA model and neural network architecture. The best ARIMA model had the lowest RMSE 

and passed the Ljung-Box test at 5% significance. Time series analysis was done with R and the 

forecast package. RMSE, MAE, and MAPE were used to evaluate model performance. Both 

models could predict disc replacement events, but ARIMA provided more accurate forecasts, 

particularly in predicting the increased distance between discs before and after replacement. The 

study concluded that ARIMA models were more effective than neural networks. 

 

Tichaona W. Mapuwei, Jenias Ndava, Mellissa Kachaka, and Brain Kusotera (2022) conducted a 

study using the Box-Jenkins ARIMA approach to predict tobacco production in Zimbabwe, using 

annual data from 1980 to 2018 from ZIMSTAT. They found that the data became stationary after 

first differencing, stabilizing both mean and variance. Diagnostic tests using ACF, PACF, and the 

auto.arima function in R determined that the ARIMA (1, 1, 0) model was the best fit. The study's 

four-year forecast (2019-2023) showed a slightly declining trend in tobacco production, 

suggesting opportunities to enhance yield with appropriate measures. The prediction aimed to 

support the idea that the tobacco industry can grow, despite the downward trend, through strategic 

interventions by government, private institutions, and farmers. 
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Nyoni (2019) analyzed Zimbabwe's electricity demand using annual data from 1971 to 2014. 

Using the Box-Jenkins ARIMA methodology, the study forecasted electricity demand for the next 

decade. Data from the World Bank showed non-stationarity, resolved by first differencing. 

Evaluation metrics like AIC, Theil's U, and ME identified ARIMA (1, 1, 6) as the best model, with 

a stable and suitable fit confirmed by diagnostic tests. The study found that electricity demand 

peaked at 1038 kWh in 1976 but has since declined. The ARIMA model predicts this decline will 

continue from 2015 to 2025, primarily due to reduced economic activity. The study recommends 

that electricity producers and distributors in Zimbabwe adjust their capacities to prevent power 

outages. 

Paraskevi Klazoglou and Nikolaos Dristakis (2018) used the Box-Jenkins ARIMA method to 

forecast US health expenses from 1970 to 2015, using annual data on health expenditures as a 

percentage of GDP from the OECD. Autocorrelation plots indicated nonstationarity, which was 

corrected by differencing. Unit root tests confirmed stationarity and ARMA parameters were 

defined using autocorrelation coefficients. The model with the lowest AIC, SC, and HQ values 

was ARIMA (0,1,1), identified as the best fit. The model's forecasting performance was assessed 

using RME, MAE, and TIC. The study aimed to create a predictive model for US health 

expenditure from 1970 to 2015, concluding that ARIMA (0,1,1) was optimal  

Aycaya-Paco Yhack Bryan, Vilca-Mamani Lindell Dennis, and Torres-Cruz Fred (2023) used the 

Box-Jenkins ARIMA method to forecast Peru's mineral extraction from 1980 to 2027, using 

monthly and yearly data from MINEM. This allowed them to examine recent and long-term trends 

in the mining industry. They used residual analysis, including the Ljung-Box and Shapiro-Wilk 

tests, to assess the ARIMA model's fit. Using the "forecast" R package, they identified the best 

model and predicted future mineral extraction. The forecast indicated an increase in annual 

production over the next five years. The study also recommended addressing mining safety and 

health issues, particularly fatal accidents, which can reduce overall production. 

 

2.6 Research issues and research gap  

Despite the significance of time series analysis in the field of production forecasting, there is a 

dearth of studies focusing specifically on nickel production. While there are numerous research 
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papers exploring time series analysis in other industries, such as manufacturing, agriculture, the 

health sector, and finance, the application to the nickel mining industry remains relatively 

unexplored. This research gap presents an opportunity to investigate the potential benefits of 

employing time series analysis techniques in optimizing nickel production at Trojan Nickel Mine.  

The existing literature on time series analysis primarily focuses on general theory and applications 

in various sectors. 

 However, there is a lack of empirical studies that directly apply these techniques to the unique 

challenges faced by the nickel mining industry. By conducting a case study at Trojan Nickel Mine, 

this research aims to bridge the existing gap and provide valuable insights into the effectiveness 

of time series analysis in improving production forecasting accuracy and operational efficiency 

 

2.7 Summary  

In this chapter, an examination of the existing literature and empirical studies related to production 

data and time series analysis was conducted. The information presented in this chapter served as 

the foundation for assessing the influence of time series on the prospects and performance of 

Trojan Nickel Mine. The subsequent chapter will delve into the methodology employed in this 

study, including the research design, data collection methods, and the planned approach for data 

analysis 
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CHAPTER 3 

RESEARCH METHODOLOGY 

 

3.0 Introduction 

This chapter focuses on the techniques employed to achieve the specified study objectives. The 

methodology extends beyond research methods, serving as a foundation for strategies utilized in 

this study's discourse and elucidating the rationale behind the selection of certain techniques over 

others. Consequently, the researcher assumes the responsibility of evaluating the study's results 

(Kothari, 2017). The research methodology provides a structure and instruments for data collection 

and outlines the plan for data analysis (Dawson, 2013). The incorporation of a time series model 

aims to reveal and forecast future nickel production values. 

 

3.1 Research Design 

The research design acts as a roadmap for navigating the intricacies of the study, providing a 

systematic approach to reduce bias and uphold the credibility of findings (Plot et al., 1999). A 

quantitative research design is adopted to unravel the underlying trends and patterns in nickel 

production at Trojan Nickel Mine. This approach facilitates a meticulous examination of time 

series data, enabling the precise measurement of production trends and forecasting accuracy. By 

employing statistical methodologies, the study aims to rigorously evaluate the effectiveness of 

time series forecasting techniques in optimizing production outcomes. The quantitative research 

design inherently brings objectivity to the study, relying on numerical data to drive analysis and 

minimize subjective biases.  

This objectivity not only enhances the integrity of the research findings but also fosters 

replicability, allowing other researchers to replicate the study's methodology and validate its 

outcomes. Given the data-intensive nature of mining operations, particularly in a dynamic 

environment like Trojan Nickel Mine, the quantitative approach is well-suited to analyze large 

datasets and extract meaningful insights. Ultimately, the research design is tailored to explore 

theoretical constructs in time series analysis and assess the practical implications of forecasting 
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techniques on nickel production at Trojan Nickel Mine. Through a systematic and data-driven 

approach, the study endeavors to contribute valuable insights to the field of mining industry 

optimization and strategic decision-making. 

 

3.2 Data Sources and Collection  

Data source indicates the origin of information, while data collection encompasses the process of 

acquiring that information (Baker, 2018). For the study on time series analysis at Trojan Nickel 

Mine, the researcher is using data directly from Trojan Mine itself, covering a period of 10 years 

from April 2013 to March 2023. Taking a secondary data collection approach means that new data 

is not being collected but existing data is being used. The main source of data is directly from 

Trojan Mine's records, including production numbers and dates. By using data directly from Trojan 

Mine, the researcher can be confident in the quality of the information being analyzed. This 

approach also allows for the coverage of a significant period, providing a comprehensive view of 

production trends over the past decade. Having a substantial amount of data is important for 

making accurate predictions and understanding long-term patterns. 

 

3.3 Research instruments   

Research instruments are implemented and utilized to gather and assess data about the research 

subject (Nieswiadomy, 2018). Laptops played a vital role in handling complex analytical tasks 

throughout the study. Their robust computing power enabled the execution of statistical analyses 

and intricate modeling processes. Given the extensive datasets involved in mining operations, 

laptops provided the necessary capability to process data efficiently, enhancing the precision and 

thoroughness of the analysis conducted by the researcher.  
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3.4 DESCRIPTION OF VARIABLES AND EXPECTED RELATIONSHIPS    

  

3.4.1 Nickel Production  

This variable represents the quantity of nickel extracted from Trojan Nickel Mine over time. It 

serves as the primary focus of the study and is measured in tons. 

  

3.4.2 Time  

Time serves as the independent variable in the time series analysis, influencing the fluctuations in 

nickel production. The temporal dimension of the data is represented in months. 

 

3.4.3 Trend Analysis  

The researcher anticipates observing a trend in nickel production over the study period. This trend 

may exhibit either an upward, downward, or stable trajectory, indicating long-term patterns in 

production output.  

 

3.4.4 Seasonality  

Seasonal variations in nickel production may be evident, influenced by factors such as weather 

conditions, market demand, or operational cycles. The researcher expects to identify recurring 

patterns or fluctuations within specific time intervals.  

 

3.4.5 Correlation with External Factors  

The researcher hypothesizes that nickel production at Trojan Nickel Mine may be correlated with 

external factors such as economic conditions, commodity prices, or regulatory changes. By 
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analyzing these relationships, the researcher aims to understand the external drivers impacting 

production dynamics.  

 

3.4.6 Cyclical Patterns  

Cyclical patterns, characterized by periodic fluctuations in production output, may be present in 

the data. These patterns may be impacted by elements like investment cycles, technological 

progressions, or geopolitical occurrences. 

 

3.4.7 Forecasting Accuracy  

The researcher anticipates assessing the precision of time series forecasting models in predicting 

forthcoming nickel production levels at Trojan Nickel Mine. By comparing forecasted values with 

actual production data, the researcher aims to assess the reliability and effectiveness of forecasting 

techniques.  

  

3.5 Diagnostic tests  

A thorough evaluation of model adequacy will be carried out to guarantee that the model fitted 

effectively captures the inherent dynamics of the time series data. This assessment will involve a 

meticulous analysis of residuals from autoregressive (AR) and moving average (MA) models. A 

comprehensive analysis of these residuals can ascertain how well the fitted model captures the 

fundamental patterns and dynamics within the time series data. An important component of this 

analysis involves investigating whether the residuals, also known as disturbances, demonstrate 

attributes indicative of a white noise process. This is a process where the residuals are random and 

exhibit no discernible patterns or trends (Montgomery et al., 2015). To evaluate this, scatter plots 

of the residuals will be reviewed. If the model is suitable, the scatter plot of residuals displays a 

rectangular form, indicating the absence of any systematic patterns. 

Furthermore, the sample autocorrelation function of the residuals will be carefully examined. In a 

reliable model, the autocorrelation function of the residuals should show no identifiable structure, 

suggesting no residual correlation remains (Montgomery et al., 2015). To enhance the evaluation 

of the fitted model's suitability, statistical assessments like the ADF,A-D test,  𝑋2 test of model 
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adequacy, and the Ljung-Box will be utilized. These tests provide valuable insights into the 

validity and reliability of the fitted model, ensuring that it accurately captures the underlying 

dynamics of the data. These tests provide quantitative measures of how well the model fits the 

data (Montgomery et al., 2015), helping to ensure the reliability of the forecasting results. Once 

an adequate model is identified and validated through diagnostic checks, it can be confidently used 

for forecasting future values of the time series data.  

 

3.6 ANALYTICAL MODEL  

The analytical framework utilized in this investigation of time series analysis for Trojan Nickel 

Mine predominantly relies on the ARIMA model. ARIMA is a commonly utilized approach for 

examining and predicting time series data, particularly in disciplines like finance, economics, and 

engineering. The ARIMA model consists of three primary elements: autoregression (AR), 

differencing (I), and moving average (MA). It is defined by three parameters: p, d, and q, 

representing the autoregressive order, differencing order, and moving average order, respectively. 

These parameters are determined based on the characteristics of the time series data and are crucial 

for accurately capturing its underlying patterns and dynamics.  

 

3.6.1 Moving Averages (MA)  

Moving averages (MA) are a fundamental component of time series analysis, offering a method 

to smooth out fluctuations and identify underlying trends. This technique involves computing the 

average of a specified number of consecutive observations in a time series, centered around each 

value of t. However, the first few and last few terms are often excluded from the calculation to 

mitigate boundary effects. MA models are particularly useful for analyzing time series data that 

do not exhibit a clear trend. By averaging out random fluctuations and noise in the data, MA 

models help to highlight underlying patterns and relationships (Tsay, 2010). Mathematically, an 

MA model of order q, denoted as MA(q), can be represented as: 

                          𝑌𝑡 = ∁0+𝛼𝑡 − 𝜃1𝛼𝑡−1 − 𝜃2𝛼𝑡−2 − ⋯ − 𝜃𝑞𝛼𝑡−𝑞 

 

Where: 𝑌𝑡 represents the value of the time series at time t 
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             ∁0 is a constant term 

             𝛼𝑡 represents the observed value at time t 

            𝜃1, 𝜃2, … . 𝜃3 are model parameters, and q is the order of the moving average  

 

The parameters represent the weights given to lagged observations when calculating the moving 

average. These weights dictate the impact of past observations on the current value and are usually 

estimated from the data using optimization methods 

 

3.6.2 Autoregressive (AR)  

Autoregressive (AR) models are essential tools in time series analysis, particularly for 

understanding and predicting sequential data points. These models leverage past observations 

within the time series to forecast future values (Tsay, 2010). An autoregressive model of order p, 

denoted as AR(p), is expressed as  

                        𝑌𝑡 = ∅0 + ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 + ⋯ + ∅𝑝𝑌𝑡−𝑝 

Here: 𝑌𝑡  represents the value of the time series at time t 

           ∅0 represents the constant term 

            ∅1, ∅2 … . ∅𝑝  are coefficients representing the influence of past observations 

           𝜀𝑡  is a  random error term 

The autoregressive model represents the linear relationship between the current value of the time 

series 𝑌𝑡  and its lagged values 𝑌𝑡−1, 𝑌𝑡−2 … , 𝑌𝑡−𝑝 . The coefficients ∅1, ∅2 … , ∅3  determine the 

strength and direction of this relationship. These coefficients are estimated from the data using 

methods such as least squares estimation. 

 

3.6.3 Differencing (I)  

Differencing, often denoted as I in the context of time series analysis is a fundamental technique 

used to covert data which is not stationary to being stationary. Stationarity is a key concept in time 

series analysis, where the statistical properties of the data remain constant over time (Box et al., 

2010). A stationary time series maintains a consistent mean, variance, and autocovariance, 
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simplifying the process of modeling and analysis. The I operator is applied to the time series data 

to achieve stationarity by taking the difference between consecutive observations. Mathematically, 

differencing can be represented as: 

  

                                       ∆𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1 

 

Where: 𝑌𝑡  is the value of the time series at time t 

            ∆𝑌𝑡  represents the differenced series at time t. 

 

Differencing effectively eliminates trends and seasonal patterns from the data, rendering it 

stationary. This technique is especially beneficial for time series data with trends or seasonal 

variations. 

 

3.7 Box Jenkins Methodology  

The Box-Jenkins methodology is a systematic approach used for constructing and implementing 

ARIMA time series models. This method is particularly suitable when working with datasets that 

have a minimum of 30 observations. The methodology consists of three iterative steps, each 

essential for conducting effective time series analysis using ARIMA models:  

1. Identification of Model - This initial stage entails determining a suitable ARIMA model 

through an analysis of past data. This involves scrutinizing the time series plot to detect trends, 

seasonal patterns, and any other underlying structures. Furthermore, ACF and partial and 

PACF plots are utilized to ascertain the order of autoregressive (AR) and moving average 

(MA) terms within the model (Montgomery et al., 2015). 

  

2. Parameter Estimation: After determining the model structure, the subsequent step is to 

estimate the undisclosed parameters of the ARIMA model. This commonly entails employing 

statistical methods like maximum likelihood estimation to adjust the model to the available 

data. The objective is to ascertain the values of the AR, MA, and differencing parameters that 

most accurately depict the inherent patterns in the time series data (Montgomery et al., 2015).  



 
 

22 | P a g e  

 

 

3. Diagnostic Checking: Following parameter estimation, diagnostic evaluations are 

conducted to evaluate the adequacy of the fitted model. This entails scrutinizing the residuals, 

which represent the disparities between the observed values and those predicted by the model. 

Diagnostic assessments aid in verifying that the model effectively captures the inherent 

patterns in the data and that the residuals display attributes of white noise, suggesting the 

absence of systematic patterns within the data (Montgomery et al., 2015).  

 

3.8 Conclusion  

In conclusion, the research methodology outlined in this chapter lays the groundwork for a 

comprehensive and rigorous analysis of time series data for Trojan Nickel Mine. By adopting a 

quantitative research design, the study aims to uncover trends and patterns in nickel production 

over 10 years from April 2013 to March 2023. Utilizing laptops for complex analytical tasks. The 

diagnostic tests, including residual analysis and model validation, will help assess the adequacy 

of the selected time series models, such as AR and MA models. Moreover, the Box-Jenkins 

methodology furnishes a methodical framework for recognizing, fitting, and validating ARIMA 

models, crucial for precise production trend forecasting. By engaging in an iterative cycle or model 

identification, estimating parameters, and diagnostics evaluation, the study seeks to create resilient 

models capable of comprehensively capturing the fundamental dynamics of nickel production at 

Trojan Nickel Mine. 
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CHAPTER 4 

DATA ANALYSIS 

 

4.0 Introduction 

To ensure the comprehensive completion of this study, an examination of data was conducted to 

assess the hypothesis and address previously mentioned research inquiries. The data is depicted 

descriptively. This section encompasses the examination, portrayal, and understanding of the 

study's outcomes. A retrospective analysis of the time series was executed to acquire pertinent 

data for the research aims. The primary objective of the study is to select the optimal model and 

utilize it to predict nickel production at Trojan Nickel Mine. Visual aids including time series 

plots, seasonal decomposition charts, and histograms are utilized to improve the lucidity and 

comprehension of the analysis, employing Excel, R, and R-studio. 

 

4.1 Descriptive Statistics  

Table 4 1 Descriptive statistics on nickel production for 10 years 

Minimum 1st 

Quartile 

Median Mean 3rd 

Quartile 

Maximum Standard 

deviation 

Skewness Kurtosis 

0 405 500 499.7 619.5 993 189.07 -0.3 0.7 

 

The summary statistics provide valuable insights into the production trends of nickel at Trojan 

Mine. The minimum value of 0.0 suggests that there were periods during which no nickel was 

produced, indicating potential downtime or operational issues. At the first quartile (25th 

percentile), which stands at 405.0 tons of nickel, it is observed that during the lowest production 

periods, approximately a quarter of the time, Trojan Mine produced less than or equal to this 

amount. The median value, representing the middle point of the dataset, is 520.0 tons of nickel, 

indicating that production fell below this value half of the time. The mean value of 499.7 tons 
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provides an average measure of production, giving a sense of the central tendency of the data, with 

a standard deviation of 189.07 tons reflecting the degree of dispersion or variability around the 

mean.  

As for the third quartile (75th percentile), standing at 619.5 tons, it indicates that during the 

majority of production periods, approximately three-quarters of the time, Trojan Mine produced 

less than or equal to this amount. The maximum value observed is 993.0 tons, representing the 

peak production level recorded during the observed period. The negative skewness (-0.3) suggests 

that the data is skewed to the left, indicating that the production values are more concentrated on 

the lower side. Additionally, a kurtosis value close to zero like 0.4 indicates that the data has a 

similar distribution to a normal distribution (mesokurtic). Overall, these summary statistics offer 

a comprehensive overview of nickel production by Trojan Mine, aiding in understanding its 

production dynamics and variability over the observed period. 

 

4.1.2 Trojan Production  History  

A time series plot of the total production spanning from 2013 to 2023 was generated to assess the 

stationarity of the data before considering any statistical tests. The line graph depicting nickel 

production at Trojan Nickel Mine from April 2013 to January 2023 provides a clear view of the 

production trends over the ten years. Initially, there is a marked fluctuation in production levels, 

with several peaks and troughs, reflecting significant variability. The production started high, 

nearing 1000 tonnes in 2013, but quickly experienced sharp declines. The time series data has 

constant variation, indicating stationarity. However, the graph suggests a general decline in nickel 

production at Trojan Nickel Mine over the past decade, presented in Figure 4.1 
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Figure 4.1: Trojan Nickel Mine Production Trend 

 

 

 

The Augmented Dickey-Fuller (ADF) test was conducted (Table 4.2) to evaluate stationarity, 

yielding a p-value of 0.01, which is below 0.5. Consequently, the null hypothesis is rejected, 

indicating that the data is stationary. The researcher then proceeded to the model identification 

phase. 

 

Table 4.2 for  data showing the ADF Test 

Dickey-Fuller Lag Order P-Value 

-5.5021 4 0.01 

 

4.2 Model Identification 

The primary objective of this stage is to ascertain the AR and MA components to define the 

ARIMA (p, d, q) model. The ACF and PACF was reviewed and depicted in Figure 4.2. 
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Figure 4.2 showing ACF and PACF of original data 

                                        

 

It is evident that p=1 because the partial autocorrelation function (PACF) in Figure 4.2 (ACF) has 

a notable spike at lag 1 before cutting off. Likewise, q=1 since the autocorrelation function (ACF) 

in Figure 4.2 (PACF) shows a prominent spike at lag 1 followed by a rapid decline. Given that the 

data is already stationary and does not require differencing (d=0), the suggested model is 

ARIMA(1,0,1). 

 

4.3 Parameter Estimation 

The next step involves determining the parameters of the AR and MA terms included in the 

fitted model. 
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Table 4.3: Model parameters 

 

 

The model has d = 0, indicating no differencing was performed. The optimal model features an 

autoregressive order of 1 (p = 1), a moving average order of 1 (q = 1), and a SE of 0.1285. 

 

4.4 Model Diagnosis / Pretests 

4.4.1 Test for stationarity 

Figure 4.3 displays residuals that exhibit characteristics akin to white noise, fluctuating around a 

mean of zero with consistent dispersion. The model in question is considered to be stationary. 

based on the pattern of these errors. 

 

 

 

 

 

 

Model:ARIMA(1,0,1) 

Standard error = 57011.49                              

Estimated variance = 22941                     log likelihood=-771.46 

AIC = 1550.91                                          AICc =1551.26                                    BIC = 1562.06 

Training and Test set error measures: 

                              ME           RMSE        MAE         MPE       MAPE      MASE            ACF1  

Training set   1.21398       149.5589   118.1564      -Inf          Inf           0.6766114    0.002769046 
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Figure 4.3 Residuals of ARIMA (1,0,1) 

 

Ho: The time series data for Nickel production at Trojan Mine is non-stationary. 

H1: The time series data for Nickel production at Trojan Mine is stationary. 

 

Table 4.4 Showing test for stationary outputs obtained from Augmented Dickey-Fuller 

Test 

Dickey-Fuller Lag order p-value 

-7.2377 4 0.01 

 

The Dickey-Fuller test statistic is -7.2377, with a corresponding p-value of 0.01, demonstrating 

statistical significance. Since the p-value is below the typical significance level of 0.05, we reject 

the null hypothesis of non-stationarity, supporting the alternative hypothesis that the data is 

stationary.. This implies that the time series data for Nickel production at Trojan Mine is  

stationary, meaning that its statistical properties such as mean and variance are the same over a 

period. Lag order of 4 indicates that the test considered up to 4 lags to account for any 

autocorrelation in the data. Overall, the results suggest that there is evidence to support the 

stationarity of the Nickel production time series at Trojan Mine. 
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4.4.2 Normality tests 

H0: The nickel-produced data follows a normal distribution. 

H1: The nickel-produced data does not follow a normal distribution. 

 

Figure 4.4 Histogram of residual 

 

 

 

The histogram depicting the residuals (Figure 4.4), displays a symmetrically distributed pattern 

resembling a normal distribution. Anderson-Darling test for normality was conducted, generating 

A and P-values to assess normality 

 

Table 4.5 Showing A and P-values obtained from the Anderson-Darling normality test 

Test statistics (𝐴2) P-value 

 0.52472 0.1779 

 

The test statistic represents the discrepancy between the observed data and the expected normal 

distribution. In this case, the value of 0.52472 indicates a relatively small discrepancy. The p-value 
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is a measure of the evidence against the null hypothesis of normality. A small p-value (typically 

less than the chosen significance level, often 0.05) suggests evidence to reject the null hypothesis, 

indicating a departure from normality. Conversely, a large p-value indicates insufficient evidence 

to disregard the 𝐻0, suggesting that the dataset is consistent with a normal distribution. Since the 

p-value (0.1779) is greater than the typical significance level of 0.05 is p-value > 0.05, we do not 

reject the null hypothesis of normality. Consequently, the dataset follows a normal distribution.  

 

Figure 4.5 A normal QQ-plot of residuals 

 

The normal Q-Q plot serves as a tool to assess the normal distribution of the dependent variable. 

It accomplishes this by plotting quantiles from our dispersion against a theoretical distribution. As 

depicted in Figure 4.5, the plot indicates that the allocation adheres to a normal distribution since 

the graphed data predominantly form a straight line. This is concluded by the Anderson-Darling 

normality test done above. 
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4.4.3 Test for Independence  

Figure 4.6 Showing ACF and PACF of residuals 

 

 

The correlograms in Figure 4.6 does not exhibit any discernible structure, confirming the absence 

of serial autocorrelations. The absence of significant peaks and the lack of any discernible pattern 

in both the ACF and PACF plots of the residuals indicate that the residuals are consistent with 

white noise. This suggests that the model has successfully captured the underlying structure of the 

data, leaving only random noise the plots confirm that the residuals do not show any structural 

pattern, implying that the model's assumptions about the residuals being uncorrelated are valid. 

 

 4.4.4 Test for Serial Autocorrelation 

The Box-Ljung test was conducted to examine serial correlation, with the hypotheses stated as 

follows: 

 

 Null Hypothesis (Ho): The time series has no serial autocorrelation. 

 Alternative Hypothesis (H1): The time series exhibits serial autocorrelation. 
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Table 4.6 Box- Lung test 

 

 

 

This test is used to assess whether there are significant serial correlations in the residuals of the 

time series model . Given that the p-value is 0.4269, which is greater than 0.05, we do not reject 

the null hypothesis at a standard significance level. Therefore there is no serial correlation in the 

residuals. 

 

4.5 Forecasting 

Figure 4.7 Nickel production forecast 

 

Chi-square value(Q) Df p-value 

20.504 20 0.4269 
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Table 4.7 Forecasted 10 month values 

Month/year Point Forecast 

 

Lo 95 
 

Hi 95 
 

04/2023 429.5896 
 

132.7251 
 

726.4540 
 

05/2023 474.0080 
 

108.1328 
 

839.8831 
 

06/2023 489.1052 
 

116.0794 
 

862.1311 
 

07/2023 494.2366 
 

120.3936 
 

868.0797 
 

08/2023 495.9807 
 

122.0434 
 

869.9181 
 

09/2023 496.5735  
 

122.6253 
 

870.5218 
 

10/2023 496.7750  
 

122.8255  
 

870.7245 
 

11/2023 496.8435 
 

122.8938 
 

870.7931 
 

12/2023 496.8668 
 

122.9171  
 

870.8164 
 

01/2024 496.8747  
 

122.9250 
 

870.8244 
 

 

The forecasted outputs provide predictions for each month along with their confidence intervals, 

which indicate the range within which the actual values are expected to fall with a certain level of 

confidence. Here, the "Point Forecast" represents the expected value for each month, while "Lo 

95" and "Hi 95" represent the lower and upper bounds of the 95% confidence interval, 

respectively. These intervals indicate the uncertainty associated with the forecasted values. The 

forecasted values are relatively stable around 496.87 from August 2023 onwards, with the 
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confidence intervals also stabilizing. The width of the 95% confidence intervals indicates the range 

of possible values, reflecting the uncertainty in the forecasts. As time progresses, the intervals 

widen slightly, indicating increasing uncertainty, but they remain relatively consistent, suggesting 

a stable forecasting model. 

 

4.6 DISCUSSION OF FINDINGS  

In the discussion of findings, the researcher analyzes and interprets the results obtained in previous 

sections, examining their implications for the research objectives and questions. Additionally, any 

limitations or challenges encountered during the analysis process are identified, providing insights 

for future research endeavors in this area. 

 

4.6.1 Limitations and Challenges 

The analysis process faced significant challenges, notably data quality issues due to missing values 

in the nickel production dataset. These gaps limited the analysis scope and introduced potential 

biases. To address this, future research should implement rigorous data collection and quality 

assurance protocols. Additionally, the modeling approach relied on assumptions inherent to the 

ARIMA model, such as linear relationships and stationary time series data. Exploring alternative 

techniques or including additional variables could provide a more nuanced understanding of 

production dynamics. 

Computational constraints also hindered comprehensive analysis, impacting sensitivity testing and 

alternative model exploration. Investing in advanced computing infrastructure could address this 

limitation, enabling more exhaustive analyses in future research.Despite these challenges, they 

offer growth opportunities. Acknowledging and addressing these constraints transparently can 

foster continuous improvement. Collecting more detailed data, exploring diverse modeling 

techniques, and conducting sensitivity analyses can enhance future research validity and 

applicability, advancing understanding of production trends at Trojan Mine and beyond. 
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4.6.2 Forecasting results 

The forecasted nickel production shows an initial upward trend, followed by a stabilization of 

around 496 units. The production increases significantly from April to July 2023 and then levels 

off, maintaining a steady production level from August 2023 to January 2024. This pattern 

indicates that while there is growth in nickel production initially, it stabilizes towards the end of 

the forecast period, suggesting that the production capacity or market demand reaches a balance. 

The forecasting results derived from the analysis of the Trojan Mine dataset are crucial, offering 

insights into future production trends at the mine. These forecasts have significant implications 

for decision-making and operations, both at Trojan Mine and within the broader mining industry. 

These forecasts provide actionable insights for strategic planning and resource allocation. 

Decision-makers can use them to anticipate production levels accurately, informing decisions on 

workforce planning, equipment procurement, and infrastructure investment. 

 This foresight is vital in the dynamic mining industry, where even slight production fluctuations 

can impact profitability. Moreover, the forecasts identify opportunities to enhance production at 

Trojan Mine by uncovering factors driving variability and inefficiencies. Stakeholders can 

implement targeted interventions to maximize productivity and minimize downtime, driving 

sustainable growth. However, forecasting involves inherent uncertainty and risk. Unforeseen 

factors like market fluctuations or regulatory changes may disrupt production forecasts. Therefore, 

decision-makers must approach forecasts cautiously, supplementing them with contingency plans 

and risk management strategies.  (Montgomery et al., 2015).  

 

4.6.3 Conclusion  

In summary, the analysis of Trojan Mine's time series data offers valuable insights into production 

trends and improvement opportunities. With strategic measures, the mine can optimize production 

and boost economic growth. The time series analysis reveals patterns in nickel production, 

enabling the development of forecasts for future trends. Despite production challenges, there are 

avenues for growth through targeted interventions, enhancing productivity and sustainability.  

Exploring alternative forecasting methods like artificial neural networks is recommended to 

improve accuracy. Integrating forecasted values into strategic planning is crucial for stakeholders, 
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facilitating informed decision-making and aligning policies with production trends. Overall, 

proactive planning and operational efficiency are vital for Trojan Mine's success. Leveraging data 

insights and innovative forecasting techniques will enable stakeholders to seize growth 

opportunities in the mining sector. 
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CHAPTER 5 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

5.0 Introduction 

In this concluding chapter, a comprehensive overview is provided, summarizing the research 

findings, conclusions, and recommendations derived from the time series analysis of nickel 

production at Trojan Nickel Mine. The chapter aims to provide a concise overview of the study's 

key outcomes, reiterate the significance of the research, and offer actionable recommendations for 

stakeholders to enhance production and drive economic growth. Additionally, areas for further 

research are identified to encourage continued exploration and improvement in the field. Through 

the synthesis of the study's findings and implications, this chapter aims to offer a significant 

conclusion to the research while making a valuable contribution to the existing body of knowledge 

within the mining industry. 

 

5.1 Summary of Findings  

The time series analysis of nickel production at Trojan Nickel Mine yielded several key findings. 

Firstly, the data was found to follow a normal distribution at once (d=0). The Augmented Dickey-

Fuller test indicated that the data was stationary, meeting the necessary assumptions for the 

ARIMA model. The analysis identified the ARIMA(1,0,1) model as the best fit, suggesting a 

significant autoregressive and moving average term. The model's performance was evaluated 

using various error measures, including  ME, RMSE, MAE, and MAPE, which demonstrated its 

effectiveness in capturing the patterns and trends in the data. Furthermore, the forecasting results 

showed potential opportunities for enhancing overall production, with a slight underestimation in 

the test set. Overall, the analysis revealed valuable insights into the production dynamics at Trojan 

Nickel Mine, enabling the development of forecasts for future trends and providing a foundation 

for informed decision-making and strategic planning. 
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5.2 Conclusions 

The time series analysis of nickel production at Trojan Nickel Mine has yielded valuable insights 

and conclusions that can inform strategic decision-making and drive improvement in the mining 

industry. The study demonstrates the effectiveness of time series analysis in understanding 

production trends and patterns, enabling mines to identify areas for improvement and optimize 

efficiency. By applying the ARIMA(1,0,1) model, the study has shown that accurate forecasting 

of nickel production is possible, allowing for proactive planning and resource allocation. 

Regular monitoring and analysis of production data are crucial for optimizing productivity and 

efficiency, enabling mines to respond quickly to changes in production trends and patterns. The 

study highlights the importance of embracing data analytics and statistical modelling in the mining 

industry, demonstrating the potential for these tools to drive innovation and improvement. The 

findings of this study have implications for the broader mining industry, demonstrating the 

potential for time series analysis and ARIMA modelling to be applied to other mines and 

commodities. 

The results of this study demonstrate the potential for data-driven decision-making to drive 

economic growth and competitiveness in the mining industry. By leveraging the insights gained 

from time series analysis and ARIMA modelling, mines can stay upfront of the curve and adjust 

to evolving market conditions. Future research can build on this study by exploring the application 

of time series analysis and ARIMA modelling to other mining operations, as well as exploring the 

use of other statistical and machine learning techniques to drive improvement in the industry. 

Overall, this study has contributed to the body of knowledge in the mining industry, highlighting 

the importance of data analytics and statistical modelling in driving innovation and improvement. 

The study's findings also underscore the importance of collaboration between data analysts, 

mining engineers, and operations managers to ensure that data-driven insights are translated into 

practical actions. By fostering a culture of data-driven decision-making, mines can optimize their 

operations, reduce costs, and improve productivity. Furthermore, the study's results demonstrate 

the potential for time series analysis and ARIMA modelling to be applied to other industries, such 

as manufacturing, logistics, and finance, where forecasting and predictive analytics are critical. 
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In conclusion, this study has demonstrated the effectiveness of time series analysis and ARIMA 

modelling in forecasting nickel production at Trojan Nickel Mine. The study's findings have 

important implications for the mining industry, highlighting the potential for data-driven decision-

making to drive economic growth and competitiveness. By embracing data analytics and statistical 

modelling, mines can optimize their operations, improve productivity, and reduce costs. As the 

mining industry continues to evolve, the importance of data-driven decision-making will only 

continue to grow, and this study provides a valuable contribution to the field. 

 

5.3 Recommendations  

The management of Trojan Nickel Mine should implement the ARIMA(1,0,1) model as a 

forecasting tool to inform production planning and resource allocation decisions. This will enable 

the mine to optimize its operations, reduce costs, and improve productivity. Additionally, the mine 

should establish a data analytics team to monitor and analyze production data regularly, identifying 

areas for improvement and optimizing efficiency. This team should work closely with mining 

engineers and operations managers to develop a culture of data-driven decision-making, 

encouraging collaboration and knowledge-sharing to drive innovation and improvement. 

The mine should also consider applying time series analysis and ARIMA modelling to other 

areas of its operations, such as maintenance scheduling and supply chain management. By 

leveraging these techniques, the mine can recognize patterns and trends within its data. 

anticipating and responding to changes in its operations. Furthermore, the mine should 

continuously monitor and evaluate the performance of the ARIMA(1,0,1) model, refining and 

updating the model as necessary to ensure optimal forecasting accuracy. 

The mining industry as a whole should embrace data analytics and statistical modelling as essential 

tools for optimizing efficiency and productivity. By investing in the development of data analytics 

capabilities, including training and upskilling programs for mining engineers and operations 

managers, the industry can drive innovation and improvement. Encouraging collaboration and 

knowledge-sharing between mines, industry organizations, and research institutions will also help 

to drive progress, as well exploring the potential for time series analysis and ARIMA modelling 
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to be applied to other commodities and mining operations. By working together, the industry can 

harness the power of data analytics to drive growth, productivity, and sustainability. 

The industry should also consider establishing a centralized data repository, where mines can share 

their data and best practices, and collaborate on research and development projects. This would 

facilitate the development of new data analytics tools and techniques, and enable the industry to 

stay ahead of the curve in terms of technological innovation. 

Furthermore, the industry should prioritize the development of data analytics training programs, 

to ensure that mining engineers and operations managers have the skills and knowledge needed to 

work effectively with data analysts and data scientists. This would help to bridge the gap between 

data analysis and operational decision-making and ensure that data-driven insights are translated 

into practical actions. 

Finally, the industry should recognize the importance of data privacy and security, and take steps 

to ensure that sensitive data is protected from unauthorized access or breaches. This would involve 

implementing robust data protection policies and procedures and investing in state-of-the-art data 

security technologies. By implementing these recommendations, the mining industry can harness 

the power of data analytics to drive growth, productivity, and sustainability, and remain 

competitive in an increasingly complex and challenging global market. 

 

5.4 Areas of Further Research  

This study has identified several areas for further research that could enhance our understanding 

of nickel production trends and patterns at Trojan Nickel Mine and beyond. One potential area of 

exploration is the application of other data analytics techniques, such as machine learning, neural 

networks, or deep learning, which may yield even more accurate forecasts. Additionally, 

integrating data from other mines, commodities, or external factors like global demand or weather 

patterns could improve forecasting accuracy and provide a more comprehensive understanding of 

the complex factors influencing nickel production. 

Another area for further research is the investigation of alternative time series models, such as 

SARIMA, ETS, or Prophet, which may better capture nickel production trends and patterns. 
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Conducting a multi-mine study, and analyzing data from multiple mines, could also identify 

industry-wide trends and patterns, enabling more effective benchmarking and best practices. 

Furthermore, examining the impact of external factors, such as global events, market fluctuations, 

or environmental factors, on nickel production could provide valuable insights for strategic 

planning. 

Developing a real-time forecasting system that provides up-to-the-minute forecasts could also 

enable more agile decision-making and optimized production planning. Finally, investigating the 

potential applications of time series analysis and ARIMA modelling in other industries, such as 

finance or logistics, could uncover new opportunities for data-driven decision-making. By 

pursuing these areas of further research, we can continue to refine our understanding of nickel 

production trends and patterns, driving innovation and improvement in the mining industry. 

Moreover, exploring the use of advanced data visualization techniques could help to better 

communicate complex data insights to stakeholders, facilitating more informed decision-making. 

Additionally, investigating the potential for integrating data analytics with other advanced 

technologies, such as artificial intelligence or the Internet of Things (IoT), could uncover new 

opportunities for optimizing nickel production and improving operational efficiency. 

Furthermore, conducting a cost-benefit analysis of implementing data analytics and ARIMA 

modelling at Trojan Nickel Mine could provide valuable insights into the economic viability of 

these approaches. This could help to inform decisions about resource allocation and investment in 

data analytics capabilities. 

Finally, exploring the potential applications of data analytics and ARIMA modelling in other areas 

of the mining industry, such as maintenance scheduling or supply chain management, could 

uncover new opportunities for improving operational efficiency and reducing costs. 
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5.5 Chapter Summary  

This chapter presented the results of a time series analysis and ARIMA modelling study on nickel 

production at Trojan Nickel Mine. The study aimed to identify patterns and trends in nickel 

production data and develop a forecasting model to inform production planning and resource 

allocation decisions. 

The study found that nickel production at Trojan Nickel Mine exhibits an increase in yield. The 

ARIMA(1,0,1) model was identified as the most suitable forecasting model, with a high level of 

accuracy in predicting nickel production levels. 

The study's findings have important implications for the mining industry, highlighting the potential 

for data analytics and statistical modelling to drive improvement in operational efficiency and 

productivity. By leveraging these techniques, mines can optimize their operations, reduce costs, 

and improve their competitiveness in the global market. 

In conclusion, this study has demonstrated the effectiveness of time series analysis and ARIMA 

modelling in forecasting nickel production at Trojan Nickel Mine. The study's findings and 

recommendations provide a valuable contribution to the mining industry, highlighting the 

potential for data-driven decision-making to drive growth, productivity, and sustainability. 
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 APPENDICES 

Appendix A: Descriptive Statistics 

# Load necessary libraries 

library(ggplot2) 

library(forecast) 

library(tseries) 

library(readxl) 

 

# Load the data 

data <- read_excel("path_to_your_file/TROJAN_NICKEL_PRODUCTION.xlsx") 

 

# Summary statistics 

summary_stats <- summary(data) 

print(summary_stats) 

 

# Plot histogram of Nickel Produced 

ggplot(data.frame(Nickel = as.numeric(data$NickelProduced)), aes(x = Nickel)) +  

  geom_histogram(binwidth = 50, fill = "blue", color = "black") +  

  labs(title = "Histogram of Nickel Produced by Trojan for the 10 Year Period",  

       x = "Nickel Produced (tonnes)",  

       y = "Frequency") 
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 Appendix B: Pretests 

 Normality Test 

# Fit ARIMA model ( ARIMA(1,0,1)) 

arima_model <- arima(data$NickelProduced, order = c(1, 0, 1)) 

 

# Extract residuals 

residuals_data <- residuals(arima_model) 

 

# Plot histogram of residuals 

ggplot(data.frame(Residuals = residuals_data), aes(x = Residuals)) +  

  geom_histogram(aes(y = ..density..), binwidth = 20, fill = "blue", color = "black") +  

  stat_function(fun = dnorm, args = list(mean = mean(residuals_data), sd = sd(residuals_data)), 

color = "red", size = 1) +  

  labs(title = "Histogram of Residuals",  

       x = "Residuals",  

       y = "Density") 

 

# Anderson-Darling normality test 

ad_test <- ad.test(residuals_data) 

print(ad_test) 
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Stationarity Test 

# Augmented Dickey-Fuller Test 

adf_test <- adf.test(data$NickelProduced, alternative = "stationary") 

print(adf_test) 

 

ACF and PACF of Residuals Independence Test 

# Plot ACF and PACF of residuals 

acf(residuals_data, main = "ACF of Residuals") 

pacf(residuals_data, main = "PACF of Residuals") 

 

Appendix C: Model Output/Results 

Estimated Model Parameters 

# Display model summary 

summary(arima_model) 

Forecasting 

# Forecasting using the fitted ARIMA model 

forecast_data <- forecast(arima_model, h = 10) # Forecast for 10 periods ahead 

 

# Plot the forecast 

plot(forecast_data, main = "10-Month Forecast of Nickel Production") 
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interpretation of Key Outputs 

ADF Test Output 

The Augmented Dickey-Fuller (ADF) test result is: 

data:  ts_data 

Dickey-Fuller = -5.5021, Lag order = 4, p-value = 0.01 

alternative hypothesis: stationary 

 

Interpretation: The ADF test statistic is -5.5021 with a p-value of 0.01. Since the p-value is less 

than 0.05, we reject the null hypothesis and conclude that the data is stationary. 

 

Box-Ljung Test Output 

The Box-Ljung test result is: 

Box-Ljung test 

data:  residuals 

X-squared = 20.503, df = 20, p-value = 0.4269 

 

Interpretation: The p-value of 0.4269 is greater than 0.05, indicating that there is no significant 

autocorrelation in the residuals, confirming that the model is adequate. 

 

Appendix D: ARIMA Model Parameters 

The ARIMA(1,0,1) model results are: 

ARIMA(1,0,1)  
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Coefficients: 

         ar1     ma1      mean 

      0.3399  0.3805  496.8787 

s.e.  0.1285  0.1222   28.3764 

 

sigma^2 = 22941:  log likelihood = -771.46 

AIC=1550.91   AICc=1551.26   BIC=1562.06 

 

Training set error measures: 

                  ME     RMSE      MAE  MPE MAPE      MASE        ACF1 

Training set 1.21398 149.5589 118.1564 -Inf  Inf 0.6766114 0.002768046 

 

Interpretation: The ARIMA(1,0,1) model has an AR coefficient of 0.3399 and an MA coefficient 

of 0.3805. The mean is 496.8787. The AIC, AICc, and BIC values suggest the model's goodness 

of fit. The residuals' error measures indicate acceptable model performance. 

 


