BINDURA UNIVERSITY OF SCIENCE EDUCATION
FACULTY OF SCIENCE AND ENGINEERING
DEPARTMENT OF COMPUTER SCIENCE

Implementing Scheduled Synthetic Monitoring for Near Real-Time Cloud
Service Availability Tracking: A Case Study of Central African Building
Society

BY

BAKO ALEXANDER (B202176B)

This dissertation is submitted in partial fulfilment of the requirements of the

Bachelor of Science honours degree in Software Engineering

APPROVAL FORM

The undersigned certify that they have supervised the student Bako Alexander’s dissertation
entitled ““ Implementing Scheduled Synthetic Monitoring for Near Real-Time Cloud Service
Availability Tracking: 4 Case Study of Central African Building Society” submitted in Partial
fulfilment of the requirements for the Bachelor of Software Engineering Honours Degree of

Bindura University of Science Education.

A.BAKO........ccoon. 20.../...06/ 2025.....

STUDENT SIGNATURE DATE
L o

...G. MHLANGA................. NS ...06.../...08./2025...

SUPERVISOR SIGNATURE DATE

...P CHAKA jit—fgg _— 06.../...08/.2025

CHAIRPERSON DATE SIGNATURE DATE

EXTERNAL EXAMINER SIGNATURE DATE

i

ACKNOWLEDGEMENT

I would like to begin by expressing my deepest gratitude to God for the opportunity
to work on this research. I would like to express my heartfelt gratitude to all those
who contributed to the success of this research. Special thanks go to the management
and staff of OLD MUTUAL-CABS bank Zimbabwe for graciously allowing me to
conduct this study within their institution and for providing valuable insights and
support throughout the research period. I am equally thankful to Bindura University
of Science Education for the academic guidance, resources, and mentorship that
made this work possible. I also appreciate the collaboration and encouragement from
colleagues and friends who offered feedback and moral support during the course
with the project. Your collective input has been instrumental in shaping this study
into what it is today. I would like to acknowledge my lecturers in the Department of
Computer Science and Engineering for their patience, support, and for equipping me
with the knowledge and skill sets necessary for this project to succeed. I am
particularly thankful to my lecturers, Mr. Hove, Mr. Mhlanga, and Mr. Chaka, for
their unwavering guidance, encouragement, and insightful feedback, which greatly
enriched the quality of this work. Finally, I want to express my gratitude to my
parents for their unconditional love and unwavering support throughout my academic
journey. They have been my financial and emotional pillars and have encouraged me

to be the best version of myself.

il

ABSTRACT

In an era where cloud infrastructure underpins critical banking operations, ensuring
continuous service availability is paramount, particularly for financial institutions operating
in dynamic and high-risk environments. This study examines the implementation of
scheduled synthetic monitoring as a contemporary, proactive approach to tracking cloud
service availability, utilizing the Central African Building Society (CABS) as a case study.
CABS currently relies on manual monitoring techniques such as SSH logins, ping, and grep
commands, which are reactive, time-consuming, and prone to human error. This project
introduces an automated, scheduled synthetic monitoring framework designed to simulate
user interactions, detect availability issues in near real-time, and generate actionable alerts
before customers are affected. Through comparative analysis, we evaluate the performance,
reliability, and operational efficiency of synthetic monitoring against traditional methods.
The study also explores the strategic implications of adopting intelligent monitoring practices
in the financial sector, including regulatory compliance, risk mitigation, and service-level
assurance. By transitioning from manual to automated monitoring, the proposed solution
aims to enhance service resilience, reduce downtime, and support digital transformation

efforts across financial institutions in emerging economies.

v

Table of Contents

APPROVAL FORM ...ttt ettt ettt sttt eeneenaeennesneens ii
ACKNOWLEDGEMENT ..ottt ettt ettt sttt st il
ABSTRACT ...ttt ettt ettt et e et e s et et e e st e s st e seentesseenseeneasseenseensenseensennean v
INEEOAUCTION. ...t ettt sttt et sa et et set e bt et e sneenaeenee e 1
I.1 Background of the StUAY.........ccceeriiiiiiiiiiiiiie et 2
1.2 Statement of the problem..........cccoocuiiiiiiiiiiiee e 4

1.3 ReSCAICh ODJECTIVES. ..ceiiiiiiiiiieciie ettt ettt e e e et e e e e e s e e s beeesabaeenes 4

1.4 ReSCArCh QUESTIONS. ...ccviiiiiiieciieceiieeetee ettt e e e e tae e e e e s beeessbaeessseeesseeennnes 5

1.5 Research propositions/hypothesis.........cccuiieiiiiiriiiiiiiie et 5

1.6 Significance of the StUdY........cccoviiiiiiiiiiiiie e 5

L7 ASSUIMPLIONS. ...eeutiieiiieiieeiteeiteeteeetteeteesite e bt e s ieeeteesateeseesaseeseesabeenseasnseeseesnseenseennne 7

1.8 Limitations/Challenges..........cccuieiiiiriiiiiiiiieeiieee et 7

1.9 Scope/delimitation of the research...........cccoocvieiiieriiiiiiniicee e 8
Chapter 2: Literature REVIEW.........cccuieiiiiiiieiie ettt ettt et et ete et sbeetaeseaeeseessneenseas 9
INETOAUCTION. ...ttt e et e e et e e e te e e easaeesabeeeeabeeeeasesessseeesseeensseeennns 9
4.6 Relevant theory of the subject matter.............cccuvveeiiiiiiiiieciecee e 10
4.6 EMPITICAl STUAICS. ...ccuviiiiiiieiiiie ettt ettt e e e e be e et e e e aveeeaaeeesaeesanaeeenns 10
2.3 Chapter SUMIMATYccouieiiietieeieetee et ettesteesteesateetteseseeteessbeebeessseeseesaseeseassseenseas 17
23,1 MaJor FINAINGS.....ccviiiiiiiieiieeie ettt ettt et 17
2.3.2 RESCAICH GAPS...iuiiiiiiiiiieiie ettt ettt ettt et et e eanees 18
2.3.3 Notable challenges.......c.cooiiiiiieiiiiiieieeie et 18
2.3.4 How my research addresses some of the challenges............ccccoceeeevienieeninennnnnn. 19
Chapter 3: Research MethodoIOZY.........cccuievuiieiieiiieiieieeie et 20
Brief deSCTIPTION.eiiiieiiietieee ettt ettt et et e st e e nbeesseeenaeens 20
3. 1RESEATCH DIESIZN. .. ueiiuiiiiiiieiie ettt ettt ettt st e et e e b e e beeenbeebeeenneennes 20
3.1.1 System Development Methodology..........cceevviiiiienieiiienieeiieeeeieee e 20
3.1.2 Functional reqUITEMENLS.cevvieriierieeriieeieetie et esteeeteeteeseaeenseessseesseessseenseesnseens 22
3.1.3 Non-Functional reqUIr€ments............ceeeveerieerieeiieenieeieenieereesieeeseeseneeseessneenseenens 22

3.1 TOOLS USEA. .o et e e e e e e e e e e e e e e e e e e aaeaaans 22

3.1.5 Data flow dIa@rami.......ccccuviieiuiiiiiiieeiee ettt etee e e eareeeaaee e 23
3.1.7 USE €Case DIAZIaM.......ccecuiieiiiiieeiieeeiiieeeieeeeieeesite e e eeeeeeesteeesssaeessseeessseessseesnneenns 28
3.2Data Collection APPIOACHES.c.viieiuiieeciiieeiieeeieeeciee et e e seteeesaeeeseaeeeeaeesreeesseeessseeenns 29
3.3Population and SaAmMPIE.........cceeuiiiiiiiiiiie e e eraeas 31
3.4Research INSIUMENLS.eocuiiiiiiiieeiie ettt ettt ettt st ebeesneeeeeas 32
3.5Data Analysis Procedures to be USEd..........cccevievuimiiniiiiiniiiieieieieccsteeeee e 32
Chapter 4: Data Presentation, Analysis, and Interpretation..............coceververienieiicnienennennee. 33
INEEOAUCTION. ...ttt ettt et et e st e et esaeeeneeas 33
4.6 Analysis and interpretation Of TeSUILS........c.eeevvieieiiieeiiieeeeee e 33
42 Statistical Evaluation........ccccooiuiiiiiiiiiiieieeeee et 36
4.3 INEETPIELALION. ..c..eiutiiiiiitieieriierieete ettt ettt ettt ettt et sb ettt be et et sae e 39
4.4 Possible reasons for missing dOWNEIMES.........cc.eeriieriierireiiieiieeiie et 39
4.5 Suggestions to improve monitoring App Performance............cccoecvevienciiiniennnn. 40

4.6 A summary of research findings..........cccceeviieiiiniiiiiiiieee e 40
Chapter 5: Conclusion and Recommendations.............c.eevveriieiieeieeniienieenieeeee e 42
R B 113 (014 13167 5 [) s FO OSSPSR 42
5.2 FUrther STUAIES.....ccueoiiiiiiiiiiericeeete ettt 42

5.3 RecOMMENAATIONS.ccuiriieriiiiiriiertieie sttt sttt ettt 43
REFEIEIICES.......comiiiiiiii ettt st et 44

Vi

TABLE OF FIGURES

Figure 1: EVOIutionary prototyPing...........ccccceeeeueeeiiueeeiieeeeiieesiiieeeieeesieeesiseeeiveesieeessee e 21
Figure 2: Proposed system dataflow diagram....................cccccovvvaiieniiiiiieniiaiieeieeeeeenn, 25
Figure 3: Scheduled task in OS................ccooooouieeiiiiieiie et 26
Figure 4: User Interface visualization dashboard.........................ccccccovvevevieiiiiniieniiaieannnnnn 27
Figure 5: Use CaSe diQQIAM..................ccccccueieiuiieiiiieeiiee e aseeen 29
Figure 6: SMS ALERTS GENeratedcccoveiiiiiiiiieiiiieeie e 34
Figure 7: Proof Encryption standard USEd.........................ccceeveuieiiiiiiiieieiieeeiieeecie e 35

Figure 8: Proof of SN00zing ALERTScccooooiiiiiiiieiee e 36
Figure 9: Recall CAlCULQIIONccooiiiiiiiiiiiiii ittt 37
Figure 10: Miss rate CalCULQLION.....................cccoiiiiiiiiiiieeii et 38

Figure 11: Precision and F1 Score calCulQtion...................cccoccoveevieeeiieeeiieeaeiieeeiieeeeeenne, 38

vii

Definition of terms

>

vV VvV V Vv V Vv VY

URL — Uniform Resource Locator

HTTP - Hypertext Transfer Protocol

HTTPS - Hypertext Transfer Protocol Secure
SaaS — Software as a Service

PaaS - Platform as a Service

[aaS - Infrastructure as a Service

SLAs - Service Level Agreements

Web Service - a software system designed to enable communication and data
exchange between applications or devices over a network, typically the Internet

Endpoint - is a specific URL or address through which a client can access a service or
resource hosted on a server. It acts as the interface between the client (e.g.,
applications, users, or devices) and the server, enabling communication and data

exchang

viii

Chapter 1: Problem Identification

Introduction

In today's digitally interconnected world, cloud services are at the core of many applications
and business operations. These services facilitate seamless communication and data exchange
between different systems, enabling functionalities such as online transactions, cloud storage,
and API-based integrations. As the reliance on cloud services continues to grow, ensuring
their reliability becomes increasingly critical. Effective monitoring is essential for ensuring
user satisfaction, maintaining SLAs (Service Level Agreements), and enabling proactive
problem resolution. Over the years, this field of monitoring hasn’t been pursued by many
organisations due to its complexity, and others ignore it since it is not a productive side of the
business, among other reasons. However, in today’s business, everything is now customer-
centric, which means service delivery is now the spotlight. In order to gain our customers’
trust and confidence, organisations are supposed to offer efficient and reliable services to
their clients. This includes having maximum service uptime possible and having quicker
resolutions in case of faults and incidents. This brings us to the issue of monitoring to ensure

that service availability is guaranteed.

This project focuses on a key aspect of maintaining robust cloud service monitoring of their
endpoints. A "cloud service endpoint" is a specific network address (usually a URL) that acts
as the entry point for accessing a particular cloud service, essentially providing a way to
connect to and utilize the features of that service within a cloud platform (AWS, 2025).
Failures or inconsistencies at these endpoints can lead to downtime, degraded performance,
and disruptions in service delivery, potentially causing significant financial and reputational
losses. The goal of this project is to develop a systematic approach to monitor the cloud
services of CABS and ensure that these services are delivered to the clients as expected at all
times. By leveraging advanced monitoring techniques and reliability metrics, this project
aims to provide actionable insights into the performance and availability of cloud services.
This will help organizations proactively address issues, enhance system resilience, and
deliver consistent user experiences. Through this initiative, we aim to bridge the gap between

theoretical reliability assessments and practical monitoring solutions, offering a

comprehensive framework that supports both developers and IT administrators in maintaining

high-quality cloud services.

1.1 Background of the study

In today’s fast-paced digital economy, cloud computing has become the backbone of modern
banking services. Financial institutions rely heavily on cloud-based solutions to offer secure,
scalable, and efficient services to their customers. Whether it is online transactions, mobile
banking, or digital wallets, the availability of cloud services plays a crucial role in ensuring a
seamless banking experience (Marston et al., 2011). However, cloud outages, latency issues,
and unexpected downtimes can severely impact banking operations, leading to financial
losses, reputational damage, and customer dissatisfaction (Armbrust et al., 2010). Real-world
incidents show how devastating these failures can be. Here in Zimbabwe, it had been the
same for financial institutions, losing large amounts of money due to service failures and
downtimes. Specifically, CABS lost an estimated figure of one hundred thousand dollars
according to analysis by its marketing department (CABS, 2024). In December 2024, Intesa
Sanpaolo, Italy’s largest bank, suffered a massive online banking outage due to system
failures triggered by intense traffic (Reuters, 2024). Thousands of customers were locked out
of their accounts, unable to complete transactions or access financial services. This is not an
isolated case; cloud failures happen more often than people realize, affecting businesses that
rely on them for daily operations (Cetin et al., 2021). The problem is even more pronounced
in multi-tenant cloud environments, where service availability, security, and compliance
become complex issues, particularly in regions with less-developed financial infrastructure

(Yeboah-Boateng et al., 2016).

The increasing frequency of cloud outages has raised concerns among financial institutions,
regulators, and consumers. Service disruptions not only cause financial losses but also erode
customer confidence in digital banking systems. To mitigate these risks, banks are adopting
multi-cloud strategies, enhancing redundancy measures, and developing robust disaster
recovery plans and proactive monitoring solutions that can detect faults before they impact
customers (McKinsey & Company, 2022). Furthermore, regulatory frameworks are evolving
to ensure cloud resilience in banking. The European Banking Authority (EBA) has introduced
stricter guidelines on cloud outsourcing risk management, emphasizing transparency,

accountability, and contingency planning (EBA, 2022). Similarly, the U.S. Federal Reserve

has recommended stress-testing cloud infrastructures to assess their resilience against

potential failures (Federal Reserve, 2023).

Despite the availability of monitoring tools, research shows that 18% of organisations have no
monitoring tools, and others use manual checks such as SSH, grep, and ping (Damian et al.,
2020). Such approaches cannot pick up faults promptly. As a result, incidents are discovered
by clients rather than application owners. This reactive nature exposes organizations to risks
of service interruptions, which can result in financial losses, reputational damage, and a
diminished user experience. In addition, the complexity of modern service architectures,
coupled with the increasing adoption of microservices and API-driven systems, has created a

need for advanced, proactive monitoring solutions.

Globally, cloud service outages have been on the rise, with increasing reliance on cloud
providers such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud. A
report by Gartner (2022) indicated that global cloud downtime incidents have surged by 35%
over the past five years, with financial institutions among the most affected sectors. This
growth is attributed to various factors, including cyberattacks, misconfigurations, software
bugs, and infrastructure failures. Regulatory bodies, such as the Bank for International
Settlements (BIS), have raised concerns about the systemic risks posed by cloud
concentration in banking (BIS, 2021). The dependency of multiple financial institutions on a
few major cloud providers creates a single point of failure, making the industry vulnerable to
large-scale disruptions. As a result, central banks and financial regulators are increasingly
scrutinizing cloud resilience strategies and advocating for multi-cloud deployments to

mitigate risks (European Central Bank, 2022).

Given the critical nature of banking services, real-time or near real-time monitoring of cloud
service availability is essential. Traditional monitoring methods often rely on periodic checks,
which may not be fast enough to detect service disruptions before they affect customers.
Banks need a more proactive approach that provides real-time insights into cloud
performance, allowing for quick decision-making and mitigation of risks (Buyya et al., 2010).
Implementing near real-time cloud monitoring ensures that banks can quickly respond to
issues, minimize downtime, and enhance the overall resilience of their services (Rimal et al.,

2009).

Cloud service providers, such as Amazon Web Services (AWS), Microsoft Azure, and
Google Cloud, offer built-in monitoring tools. However, these tools may not always align
with the specific needs of banking institutions, particularly in terms of compliance, security,
and integration with existing banking systems (Hashem et al., 2015). Therefore, banks require
customized monitoring solutions that provide continuous visibility into cloud availability and

performance metrics while ensuring regulatory compliance and data protection.

This study focuses on the development of a near-real-time cloud services availability
monitoring system tailored for banking services. By leveraging monitoring techniques such
as the RESTful GET method, POST method, and Socket connection trials to test the
availability of test complete servers and services. Monitoring is done from the client’s end,
allowing the bank to note the quality of service being delivered to its customers. This is
cemented by keeping track of matrices such as response time and failed job count. Banks can
gain deeper insights into service health and potential failures before they escalate (Garg,
Versteeg & Buyya, 2011). The goal is to enhance service reliability, improve customer trust,

and ensure uninterrupted banking operations in an increasingly cloud-dependent environment.

Cloud service outages in the banking sector pose significant challenges, from disrupting
financial transactions to undermining regulatory compliance and customer trust. As the
banking industry continues to embrace cloud technology, it is imperative to address these
vulnerabilities through strategic resilience planning, regulatory oversight, and technological
innovation. By adopting proactive monitoring measures, banks can ensure uninterrupted

service delivery, safeguarding financial stability in an increasingly digitalized world.

1.2 Statement of the problem

CABS had been facing challenges of cloud service disruptions and service failures due to
traditional monitoring techniques. The bank usually relies on manual checks such as SSH,
grep, and ping, but these methods were falling short as they failed to notice service outages
on time. In 2024, the marketing department expressed its concern over losing customers to
other banks due to frustrations from these devastating service outages. These monitoring
techniques also created issues with false positive alerts, where the service appeared to be
online from the bank’s perspective, but the clients were unable to access it. As a result,

problem resolution would be delayed, as the bank relied on customer reports to identify

service failures. Therefore, it became desirable to develop a more effective monitoring

solution to address these challenges.

1.3

1.4

1.5
H1

H:

Research objectives
1. To create an app that:
a. checks the availability of cloud services at 2-minute intervals
b. Send SMS alerts if a cloud service is down
c. Save downtimes and up times of cloud services in the MySQL database
d. Visualize cloud services status on a dashboard
2. Determine if endpoint monitoring can be reliably utilized for monitoring of cloud
services using statistical evaluation
3. Use statistical evaluation to measure the performance of the WS Monitor based on

recorded responses and the ability to detect service outages in 8 week period .

Research questions

How can an app be designed to check the availability of cloud services at 2-minute
intervals efficiently?

How can automated alerts be implemented to notify users immediately when a cloud
service goes down?

What is the optimal way to store downtime and uptime data in a MySQL database for
efficient retrieval and analysis?

How can cloud service status be visualized in an intuitive and user-friendly dashboard?
How accurate and reliable is endpoint monitoring in detecting cloud service availability
issues?

How effective is the WS Monitor in detecting service outages over 30 days based on

recorded responses and statistical performance evaluation?

Research propositions/hypothesis

endpoint is reliable for monitoring of cloud services

endpoint is not reliable for monitoring cloud services

1.6 Significance of the study

The significance of this study lies in addressing the growing demand for proactive monitoring
solutions that go beyond traditional reactive methods. While existing tools can identify and
address issues after the manual checks, they often fail to provide timely and comprehensive
insights into long-term reliability. This gap leaves organizations vulnerable to service
interruptions, data inconsistencies, and security risks. By developing a monitoring cloud
service monitoring tool, this study contributes to minimizing downtime, improving fault
tolerance, and enhancing overall service quality. A major focus of this research is simplicity
and an easy procedure for monitoring cloud services to encourage even small businesses to
monitor their services. This offers the potential to revolutionize how organizations monitor

and manage their cloud services, fostering innovation in reliability engineering.

This research is particularly justified in the context of increasing reliance on digital systems,
where even minor service disruptions can lead to significant financial and reputational losses.
The findings of this study are expected to benefit software developers, IT administrators, and
organizations by providing actionable strategies and tools to ensure consistent and reliable

service delivery.

Significance to Customers

For banking customers, service availability is critical in ensuring seamless access to financial
services such as fund transfers, bill payments, and loan applications. A cloud service
monitoring tool enhances transparency by providing real-time updates on service status,
minimizing frustration and uncertainty. It also helps in early detection of potential issues,
ensuring uninterrupted banking experiences, and reinforcing customer trust in digital banking

platforms.

Significance to the Bank

For financial institutions, downtime equates to revenue loss, reputational damage, and
potential regulatory penalties. A cloud service monitoring tool enables proactive issue
resolution by detecting anomalies before they escalate into full-blown outages. This improves
operational efficiency, enhances service reliability, and ensures compliance with financial
regulators' guidelines on risk management. Additionally, the insights gained from continuous
monitoring can help banks optimize cloud infrastructure, reducing costs and improving

performance.

Sienificance to the Universal Body of Knowledge

The development of a cloud service monitoring tool contributes to the broader field of
knowledge by advancing research in cloud resilience, artificial intelligence-driven anomaly
detection, and financial technology innovation. It provides empirical data on service
availability trends, which can be used by researchers, policymakers, and technology
developers to enhance cloud computing frameworks. Additionally, it facilitates collaboration
between technology providers, academic institutions, and regulatory bodies to establish best

practices in cloud reliability (Williams et al., 2023).

Significance to the Economy

At a macroeconomic level, ensuring cloud service availability in banking is vital for financial
stability. The banking sector is a cornerstone of economic activity, facilitating transactions,
investments, and economic growth. Persistent service disruptions can lead to market
instability and a decline in investor confidence. A robust monitoring system helps prevent
large-scale disruptions, supporting economic continuity and resilience in the face of

technological challenges.

Cloud service outages in the banking sector pose significant challenges, from disrupting
financial transactions to undermining regulatory compliance and customer trust. As the
banking industry continues to embrace cloud technology, it is imperative to address these
vulnerabilities through strategic resilience planning, regulatory oversight, and technological
innovation. By adopting proactive measures, banks can ensure uninterrupted service delivery,

safeguarding financial stability in an increasingly digitalized world.

1.7 Assumptions

» The data collected during the monitoring process is assumed to be accurate, complete,
and representative of the typical behaviour of web service endpoints.

» It is assumed that the reliability of web service endpoints is critical to the overall
functionality and performance of the cloud services they support.

» The study assumes that monitoring an endpoint allows us to detect which service is up
or down.

» Key metrics such as response time, failed jobs, and availability are assumed to be
accurate and sufficient indicators for evaluating the availability and reliability of the

web service

1.8

1.9

The study assumes that variations in user demand and traffic loads significantly
impact the performance and reliability of web services
The findings and recommendations derived from the study are assumed to be

applicable across various industries and use cases that rely on cloud services.

Limitations/challenges

Monitoring the reliability of endpoints in large-scale systems with numerous services

and distributed architectures can be resource-intensive and may introduce latency.

Modern web service environments are highly dynamic, with frequent updates,
deployment changes, and traffic fluctuations, making it difficult to establish consistent
monitoring baselines.

Monitoring tools may need access to sensitive system or user data, raising concerns
about data privacy and security, particularly in regulated industries.

Collecting high-quality, comprehensive, and near-real-time data for monitoring web
service endpoints can be challenging. Incomplete or inaccurate data may affect the
overall findings of the study

Implementing near-real-time monitoring and decision-making systems for availability
can be difficult due to the need for immediate processing and action on vast amounts

of data, which may require significant computational resources.

Scope/delimitation of the research

This research covers all three aspects of cloud services, that is, Software as a Service (SaaS),

Platform as a Service (PaaS), and Infrastructure as a Service(IaaS), focusing on using

scheduled synthetic monitoring to track the availability of services. To cover these three

aspects, we will be using Test Complete servers, APIs, and software applications on the web

used by the bank to deliver its services to its clients. In this research, we are not concerned

about what could have caused faults, but only to determine whether a service is up or down.

If it is not available, the aim is to notify the responsible people that the service has gone down.

We should also have a record of these downtimes to report if it is ever needed.

Chapter 2: Literature Review

Introduction

The rapid advancement of cloud computing has led to its widespread adoption across
industries, with financial institutions being among the most reliant on cloud infrastructure.
The increasing reliance on cloud computing by financial institutions has necessitated the need
for highly reliable and continuously available cloud services. Here in Zimbabwe, banks and
other small financial institutions offer their services through the cloud for ease of doing
business. The financial sector, characterized by high transaction volumes and strict regulatory
requirements, demands near real-time monitoring of cloud service availability to mitigate
risks associated with downtime and service disruptions. The impact of service unavailability
can be severe, leading to financial losses, reputational damage, and regulatory penalties from
the Central bank (RBZ). In addition, regulatory frameworks governing financial services
impose stringent compliance requirements that necessitate continuous monitoring of cloud
services. This literature review explores the theoretical underpinnings of cloud availability
monitoring, examines empirical studies on the subject, identifies emerging global trends, and
highlights research gaps that need to be addressed for improved reliability and security in

cloud services.

Several high-profile cloud outages have disrupted banking services globally, demonstrating
the critical need for robust contingency measures. In December 2021, an AWS outage led to
significant disruptions for banks in North America, including major financial institutions like
Capital One and Ally Bank. Customers experienced failed transactions, inaccessible banking
apps, and delayed fund transfers (Business Insider, 2021). The incident was attributed to a
network congestion issue within AWS’s US-East-1 region, highlighting the risks of regional

cloud dependencies.

In another notable incident, a major Azure outage in March 2022 affected several European
banks, leading to widespread service disruptions. Barclays and Deutsche Bank were among
those impacted, with customers unable to access online banking portals and perform real-time
transactions (Financial Times, 2022). The failure was caused by a configuration error during a
routine update, demonstrating the vulnerabilities associated with cloud maintenance

operations. In 2023, Google Cloud experienced a severe outage due to a Distributed Denial of

9

Service (DDoS) attack, affecting major banks in Asia, including DBS Bank and ICICI Bank
(Reuters, 2023). Customers reported transaction failures and ATM downtimes, underscoring

the cybersecurity risks inherent in cloud-dependent banking.

Near real-time monitoring refers to systems that continuously track web service metrics, such
as uptime, response times, and error rates, with minimal delay. Monitoring tools like
Prometheus, Nagios, and Datadog are widely used for this purpose, offering alert systems and
real-time dashboards (Kohler et al., 2020). Such systems ensure service disruptions are
identified promptly, allowing for rapid intervention to minimize downtime. Near real-time
monitoring leverages continuous data collection and analysis to track system performance
and detect anomalies promptly. Techniques such as flow monitoring, packet sniffing, and
telemetry systems have been widely adopted to evaluate endpoint reliability. Tools like
Prometheus and Nagios enable real-time data visualization and anomaly detection, ensuring
timely intervention in cases of service degradation (Obkio, 2023; IEEE, 2023). Recent
advancements in edge and cloud computing have further enhanced monitoring frameworks.
By offloading computational tasks to the edge, these systems reduce latency and improve
bandwidth utilization, as shown in applications across smart grids and industrial monitoring

systems (Zhang et al., 2022).

4.6 Relevant theory of the subject matter

A fundamental theoretical foundation for understanding cloud service availability monitoring
is Systems Reliability Theory (SRT), which argues that complex systems must incorporate
redundancy and continuous monitoring to ensure high reliability. Cloud infrastructures, being
highly complex and distributed, require robust monitoring mechanisms to identify potential
failures before they escalate into system-wide disruptions (Barlow et al, 1996). Another
relevant framework is Service Availability Theory, which focuses on designing systems that
maximize uptime through proactive strategies, including load balancing, automated failover
mechanisms, and real-time monitoring (Chen et al, 2018). These theories support the
development of cloud monitoring frameworks that utilize real-time analytics and artificial

intelligence to predict and mitigate service disruptions before they affect users.

10

4.6 Empirical studies

Empirical studies highlight the increasing adoption of real-time cloud monitoring solutions in
financial institutions. A study by Patel et al. (2020) found that banks and investment firms use
cloud monitoring tools such as Amazon CloudWatch, Microsoft Azure Monitor, and Google
Cloud Operations to track service performance, detect anomalies, and respond to outages in
real time. These tools integrate Al and machine learning algorithms to analyse historical data,
predict failures, and enable automated remediation. Kumar and Singh (2021) further
examined the role of multi-cloud strategies in enhancing cloud availability for financial
institutions. Their findings indicated that institutions that diversified their cloud providers
experienced fewer service disruptions compared to those that relied on a single provider.
However, the study also identified challenges in maintaining a consistent monitoring
framework across multiple cloud environments, given the varying metrics and monitoring

capabilities of different providers.

The cloud services industry has been evolving rapidly to improve real-time monitoring
capabilities. A global study by Tan et al. (2020) highlighted the regulatory disparities in cloud
monitoring practices across regions. The research found that European financial institutions,
under strict regulatory frameworks such as the General Data Protection Regulation (GDPR),
had more robust monitoring mechanisms than their counterparts in North America and Asia.
Additionally, Johnson et al. (2019) found that while cloud providers offer Service Level
Agreements (SLAs) with uptime guarantees, the effectiveness of built-in monitoring tools
varies significantly depending on workload characteristics and system architecture. This has
led to the development of third-party cloud monitoring solutions that offer more granular

insights and real-time alerts beyond what cloud providers natively support.

One of the most significant advancements in cloud monitoring is the increasing adoption of
Al-driven monitoring systems. Research by Zhang et al. (2022) demonstrated that Al-
powered monitoring tools outperform traditional rule-based monitoring in detecting
anomalies and reducing response times. These systems leverage real-time log analysis,
pattern recognition, and predictive analytics to enhance cloud service availability. Despite
their effectiveness, concerns over data privacy, security, and compliance with regulatory
standards have slowed down the widespread adoption of Al-driven monitoring in financial

institutions. Another emerging trend is the use of edge computing to improve cloud

11

monitoring efficiency. Traditional cloud monitoring frameworks often rely on centralized
processing, which can introduce latency and delay incident response times. Gupta et al. (2023)
found that edge computing helps mitigate this challenge by enabling real-time processing
closer to the data source, reducing latency, and improving response times for mission-critical

financial applications.

Several global studies have also highlighted the persistent challenges in cloud service
availability. Miller and Evans (2021) investigated service disruptions across major cloud
providers, including AWS, Microsoft Azure, and Google Cloud. Their research found that
network failures, misconfigurations, and cyberattacks remain significant causes of cloud
outages. While cloud providers invest heavily in redundancy mechanisms, service disruptions
still occur, affecting financial institutions that rely on real-time data access for transactions
and compliance reporting. Similarly, Nakamura et al. (2022) explored cloud service
availability challenges in the Asia-Pacific region. They found that financial institutions in
emerging economies face greater risks due to unstable network infrastructure and limited
access to advanced monitoring tools. Their research recommended investments in redundancy
architectures, Al-driven monitoring, and hybrid cloud strategies to mitigate service

disruptions.

Comparative research by Gomez and Torres (2023) examined cloud monitoring adoption
across Latin America, North America, and Europe. Their findings indicated that Latin
American financial institutions lag in cloud monitoring adoption due to regulatory gaps and
limited cloud computing infrastructure. The study called for stronger government regulations
to enforce mandatory real-time cloud monitoring frameworks, ensuring financial institutions

in the region achieve higher levels of cloud service reliability.

Despite advancements in real-time cloud monitoring, several challenges persist. One major
challenge is latency in data processing, where delays in collecting and analysing monitoring
data can reduce the effectiveness of real-time response mechanisms. This issue is particularly
critical for financial institutions engaged in high-frequency trading, where even milliseconds
of delay can lead to significant financial losses. Another issue is false positives and alert
fatigue, where Al-driven monitoring systems generate excessive alerts, making it difficult to
distinguish between genuine threats and irrelevant notifications. Additionally, security risks
associated with real-time monitoring tools arise due to their deep system access, which

increases the potential attack surface for cyber threats. Scalability constraints also pose a

12

challenge, as monitoring systems must efficiently scale alongside expanding cloud
infrastructures without introducing performance bottlenecks. Furthermore, compliance with
stringent financial industry regulations such as GDPR, PCI-DSS, and Basel III remains a
critical concern, as monitoring solutions must align with these requirements while ensuring

data security and privacy.

Several research gaps remain unaddressed in the field of near real-time cloud monitoring for
financial institutions. Firstly, there is a lack of standardized monitoring frameworks that can
be universally adopted across different cloud providers. While some financial institutions
have developed proprietary monitoring tools, there is no widely accepted industry standard
for realtime cloud service availability monitoring. Secondly, integration challenges in multi-
cloud environments need further exploration, particularly in ensuring consistency in
monitoring metrics across different cloud platforms. Thirdly, research on the balance between
real-time monitoring and regulatory compliance remains limited. Financial institutions must
navigate the complexities of data privacy laws while implementing continuous monitoring
solutions. Fourthly, while Al-driven monitoring solutions are promising, barriers to adoption,
such as cost, complexity, and trust in Al-driven decision-making, require further investigation.
Additionally, there is limited research on automated incident response mechanisms that can
immediately mitigate cloud service disruptions without requiring manual intervention. Finally,
the cost-benefit analysis of deploying real-time monitoring solutions versus traditional
monitoring approaches needs further exploration to help financial institutions determine the

most effective strategies for cloud service availability monitoring.

According to an industrial study by Damian and colleagues in 2020, it shows that large
portion of organisations do not pursue monitoring, and most of these organisations do not
have monitoring tools at all, they rely on manual checks such as SSH, grep, and ping. In
order to provide insight into the state of industry monitoring practices, their study focused on
the following topics: (a) industry monitoring practices and tool adoption; (b) the scope and
complexity of industrial monitoring issues; and (c) the function of software architecture and
software processes with regard to monitoring strategies. They use interviews and a web
survey with more than 140 practitioners from more than 70 organizations as part of their
mixedmethods empirical research. The following were the main conclusions.(a) Despite the
fact that the downtime of their applications is closely correlated with the automation and
responsiveness that monitoring enables, industrial decision-makers do not view monitoring as
a critical asset; (b) monitoring is carried out using antiquated technology, primarily MySQL

13

querying or something similar (e.g., Nagios); and (c) clients, not application owners, are the
ones who find incidents. (Damian et al., 2020). These results demonstrated that only a small
number of large organizations are actively monitoring their services because of the
aforementioned issues, even though there are many monitoring tools available on the market.
According to research, in order to prevent service interruptions and harm to one's reputation,
monitoring frameworks that are simple to implement must be developed. Additionally,
according to recent studies, 50% of organizations lack monitoring standards, and some of the

available tools are difficult to use.

For Nucleic Acids Researchers in Berlin, a related system called Aviator—a web service for
tracking cloud service availability—was created in 2021. It was employed to keep an eye on
the availability of the instruments they needed for their study. They set up a crawler that
attempts to access the webpage twice a day in order to test a web server's availability. In a
Docker container, they used pyvirtualdisplay to display a Python script that was running
Selenium with Google Chrome. Their implementation waits up to 30 seconds when a
webpage is queried, and another 30 seconds if status code 202 is returned, which happens
often when R Shiny servers are launched.. The JavaScript console is used to extract
performance metrics like memory usage and response times for the frontend and backend.
The ChromeDriver log is used to extract additional data, like the quantity of requests, the
SSL certificate status, or the response status code. After that, the web server implementation
receives the gathered data and updates the database appropriately. Only when their response
return code is 200 are they deemed to be online. A website was considered online for the day
if it was accessible in at least one of the two ways at least once every day. Nonetheless, there
is a significant reliance on web services nowadays, and multimillion-dollar transactions are
carried out via these websites. The business can suffer significant losses if a service is
unavailable for a few hours; therefore, polling frequency should be increased to minimize

extended outages.

During the COVID era, Aviator was used to track services related to COVID-19. Their goal
was to evaluate how well it performed in dynamic settings. The findings show that there were
issues with false positives in this app. Determining whether a reachable website is also
functional is an open question that the researchers neglected to address. An automatic link
availability checker could be incorporated as a first step to improve the relationship between
a website's functionality and availability. Then, a buildup of broken links might serve as a
clue that something is broken. Similarly, a collection of site assets that don't load could be a

14

sign of a problem. Monitoring the modifications made to the web pages and queries over time

may also yield more information (Tobias et al., 2021).

Another study was conducted in 2021 at Ryerson University in Toronto, Canada. A team of
researchers investigated the difficulties in cloud service monitoring. Resource intensity,
scaling difficulties, monitoring requirement dynamics, and security concerns were some of
these difficulties (William et al., 2021). By avoiding storing repetitive values, which can
reduce the size of stored data by up to 80%, building a fault-tolerance monitoring system
based on clustered architecture, and combining role-based monitoring templates with agent-
based monitoring, my proposed system aims to address some of these issues. It also uses an
event processing engine to refine the data collected and provide a reliable and comprehensive
monitoring solution. Furthermore, a thorough framework covering PaaS, SaaS, and IaaS will
be part of the suggested solution. To further improve security, data exchange between the

service, monitoring tool, and databases is always encrypted.

According to recent research, maintaining the effectiveness, dependability, and performance
of cloud services requires constant monitoring. However, the industry's current ad hoc
monitoring methods may lead to inconsistencies and inefficiencies (Srinivas et al, 2024). An
empirical evaluation on "Intelligent Monitoring Framework for Cloud Services: A Data-
Driven Approach" found that, in spite of great efforts to guarantee reliability, production
incidents or failures are unavoidable, can harm customers, and necessitate a large amount of
engineering resources and manual labor to mitigate. Therefore, minimizing the impact on
customers and lowering the related expenses require the early detection and mitigation of

incidents.

Service providers proactively identify and mitigate incidents before they have an impact on
customers and continuously monitor service health in order to address this. Service owners
add monitors based on their knowledge of service architecture, key dependencies, and
service-level agreements in the current trial-and-error method of creating monitors. They also
emphasized that the way services are currently monitored is error-based, with service owners
adding monitors in accordance with their knowledge of the service architecture, key
dependencies, and service-level agreements. The majority of monitoring tools nowadays are
redundant monitors, which leads to noisy alerts and wasted effort, according to the results. In

light of these problems, I present a monitoring framework that is universally applicable

15

regardless of resource classes. It should also prevent noisy notifications by implementing a

snoozing mechanism in alerting until the problem has been fixed.

As a relatively new technology, there is currently no widespread agreement on suitable
evaluation standards for cloud computing and its monitoring tools. Appropriate monitoring
tools are desirable, and their usefulness and effectiveness should have been assessed. Below
is a discussion of several empirical studies. MoDe4SLA, as proposed by Bodenstaff et al.
(2011), enables the monitoring and management of inter-service dependencies within a
composition. They conducted an experiment with 34 participants to empirically validate their

methodology.

By asking specialists to oversee simulated service composition executions using MoDe4SLA,
the authors assessed usefulness. But instead of keeping an eye on the quality of the services,

they concentrated on the outcomes, which produced a well-rounded set of services.

A framework for service management based on SLAs was proposed by the SLA@SOI
project. They provided assessments that showed how SLA@SOI was applicable.
Additionally, they provided a case study on how the SLA@SOI framework is applied to
eGovernment domains. Instead, the case study served as a proof-of-concept, and the findings
ignored the monitoring approach evaluation in favor of concentrating on the full framework.
CaSViD was introduced by Emeakaroha et al. (2012), who also used a proof-of-concept to
assess their proposal. They assessed two aspects: (i) the architecture's ability to automatically
determine the effective measurement interval for efficient monitoring, and (ii) its ability to
monitor applications at runtime in order to detect SLA violations. The authors did not

concentrate on how users perceived their solution, and the evaluation was not rigorous.

Lastly, a number of publications discuss their experiences using monitoring tools to assess
performance, latency, efficiency, and other low-level NFRs. GMonE (Global Monitoring
System), a cloud monitoring tool, was proposed by Montes et al. (2013). They used an
experimental testbed to assess GMonE's overhead, scalability, and performance. High
performance, low overhead, scalability, and elasticity were all tested in a large-scale cloud
environment. In-depth tests were conducted by Meng et al. (2013) in a cloud environment
simulation that included real-world system and network traces. The findings demonstrate that
their method outperforms others in terms of multi-tenancy performance, scalability, and

monitoring costs.

16

However, real environments and users who could offer feedback and help improve the
approach with their perspectives were not included in their evaluation. Some limitations in
the empirical evaluation of cloud monitoring solutions have been identified through the
analysis of the aforementioned studies. These include: (1) the dearth of empirical studies
evaluating the experience of users with the monitoring tool; (2) the absence of studies
analyzing the interaction between the monitoring solution and its users to define the quality
characteristics to be monitored; and (3) the analysis of the likelihood of intention to use a
particular solution when users need to monitor their cloud services. Therefore, when a request
is posted to the system, my suggested framework will record the number of failed jobs and
response times, enabling us to see the system from the viewpoint of the user. In most cases,
this enables WS providers to make the required modifications to ensure that their clients

receive top-notch service.

Cloud services must be monitored in almost real-time to guarantee availability and
dependability. The efficiency of these systems will be further increased by addressing issues
like complexity, security, false positives, and redundant, noisy alerts. Organizations will be
able to easily monitor their services with the help of the suggested system's straightforward
architecture. Because the system monitors the system from the perspective of its users,
adoption of this framework will increase the number of users who can monitor their services

and improve the quality of service.

According to the literature, in order to improve service availability, financial institutions and
the cloud service sector are actively investing in near real-time monitoring solutions. A
theoretical basis for comprehending the significance of ongoing monitoring in intricate cloud
environments is provided by the Systems Reliability Theory and the Service Availability
Theory. Empirical research highlights the benefits of edge computing, multi-cloud strategies,
and Al-driven monitoring in guaranteeing the dependability of cloud services. There are still
a lot of unanswered questions, though, especially in the areas of cost analysis, automated
response systems, compliance, standardization, multi-cloud integration, and Al adoption. In
the financial industry, where even the smallest disruption can have serious repercussions,

closing these gaps is essential to guaranteeing reliable, safe, and compliant cloud services.

17

2.3 Chapter Summary

23.1

1. Incidents are being discovered by users rather than service owners

2. 18% of companies have no monitoring tools; they rely on manual checks, such
as SSH, grep, and ping

3. Financial institutions in developing countries are more subject to cloud service
outages due to unstable network infrastructure

4. Network failures, misconfigurations, and cyber-attacks are the most common
causes of service disruptions in the financial industry

5. Diversity in cloud providers can reduce downtimes

6. Countries with strict regulations offer better proactive monitoring of cloud
services

7. SLAs encourage the development of effective monitoring tools

8. Edge computing reduces disruptions associated with centralized processing

9. Globally, financial institutions are using Al and ML tools for monitoring, but

their adoption has slowed down due to security and privacy concerns.

2.3.2
1. Develop universally accepted frameworks that can be adopted across different cloud
platforms.

2. Addressed the challenges associated with monitoring across multiple cloud providers
in real time.

3. How can financial institutions balance the need for real-time monitoring with
stringent data protection laws such as GDPR and PCI-DSS?

4. How to overcome the barriers to Al adoption in cloud monitoring?

5. Lack of research on automating mitigation strategies in real-time cloud service
disruptions.

6. More research is needed to determine the financial implications of deploying real-

time monitoring solutions versus traditional periodic monitoring approaches.

18

2.3.3
1. False positives
Excessive alerts
Maintaining a constant framework for different cloud environments
Privacy and security risks
Limited scalability in monitoring tools

Complex architectures that are not user-friendly

S A A R e

Balance between monitoring and industry regulations

234
1. Snoozing of alerts
Post a request and validate to avoid false positives

User-friendly dashboard to avoid complexity

B

Use data encryption to combat data security and privacy issues

2.4 Conclusion

This chapter has explored the current state of cloud service monitoring in financial
institutions, particularly in developing countries, and highlighted significant challenges and
gaps in the field. Key findings indicate that many incidents are still discovered by end-users
rather than service providers, with a concerning 18% of companies lacking formal monitoring
tools. Cloud outages in developing regions are largely due to unreliable infrastructure, and the
primary causes of service disruptions include network failures, misconfigurations, and
cyberattacks. However, diversification of cloud providers, strict regulatory environments, and
the integration of technologies like edge computing and Al have been identified as potential

solutions to improve monitoring efficacy and reduce downtime.

The research also identifies pressing gaps, such as the need for standardized monitoring
frameworks, real-time multi-cloud monitoring solutions, and strategies to overcome Al
adoption hurdles. Furthermore, it draws attention to unresolved challenges, including false
positives, alert fatigue, and the difficulty of maintaining consistency across varied cloud

architectures while remaining compliant with industry regulations.

19

To address some of these challenges, this research proposes practical solutions such as
implementing alert snoozing mechanisms, using validation techniques to reduce false
positives, designing intuitive dashboards to enhance usability, and employing encryption to
mitigate privacy and security concerns. These contributions aim to support the development
of more resilient, scalable, and secure cloud monitoring practices tailored to the unique needs

of financial institutions operating in diverse regulatory and infrastructural environments.

20

Chapter 3: Research Methodology

Brief description

The cloud services that CABS provides to its stakeholders will be the subject of the study.
WS Monitor, a Laravel web application designed to track and monitor the availability of
these services, will be used in this study. The OS's scheduled task for the application will
cause web services to be polled to assess their health, including availability, response times,
and other metrics. It will send requests on a regular basis and check for answers using the
architecture of SOAP and RESTful APIs. The statistics are saved in the database and log for
reporting purposes, and an alert is meant to be generated in the form of a text message each
time we are unable to contact a service or a TC Server. The researcher has created seeders
and database migrations for the database, which make it simple to create tables and add initial
values to them, respectively. To determine whether the method is reliable in identifying
anomalies in the event of incidents in a timely manner, recorded responses will be statistically

evaluated. The Laravel PHP framework is used in the development of the system.

» The study will be conducted on:4 TC Server
» 4 API» 11 Webservices

3.1Research Design

A comprehensive approach used to integrate various components of the research study in a
way that will aid in successfully resolving the research problem is referred to as research
design. A reference regarding the collection, measurement, and analysis of data is also
included in the research design (Johnson et al, 2020). Since hypothesis testing is the
foundation of the research, an experimental study will be used as the research design. The
researcher constructed a prototype of the real system in order to carry out the experimental

investigation. Efficiency and dependability will be evaluated using the prototype.

3.1.1 System Development Methodology

The set of procedures used to conduct research is known as the system development
methodology. Software development work is divided into discrete phases by a software
development methodology (Ponto, 2021). The evolutionary prototyping model was used to
design the system. Below is a more thorough explanation of the evolutionary prototyping

model.

21

A working software model with a few restricted features is called a prototype. The prototype
is an additional effort that should be considered when estimating effort because it does not
always contain the exact logic used in the final software application. Users can assess
developer proposals and test them out prior to implementation through the use of prototyping.
It also aids in comprehending the requirements, which are unique to each user and might not
have been considered by the developer when designing the product. In this study, WS
Monitor was first created to monitor the availability of just three cloud services: a web
service, an API, and a test full server. The evolutionary prototyping for this work is depicted

in the diagram below, Figure 1:

NO
YES

Figure I1: Evolutionary prototyping

Basic Steps for Prototyping

Requirement gathering

» All of the fundamental needs and specifications for the prototype are gathered at this
first stage of evolutionary prototyping. At this point, working with the Bank and the

ICT department, functional and non-functional requirements are established.
Developing the initial prototype

» Following requirements collection, a prototype is created based on user-specified
requirements; therefore, the prototype should be able to conduct polling, save

responses to the database and log, and produce alerts. These features provide a

hypothetical image of the finished system, even though they might not be precisely
like the one that will be developed.

Reviewing and Evaluation of the prototype

>

A few project stakeholders are shown the prototype. In order for the monitoring tool to
address all of the client's concerns, the feedback from the presentation is extremely
important because it is incorporated into the prototype that is being developed. Revising

and Enhancing the prototype

The prototype that is being developed is improved using the findings from the
evaluation. At this point, the prototype is modified until all project stakeholders are
happy. The system is delivered once all requirements have been satisfied; if not, the

prototype is improved and revised once more until we satisfy the bank's requirements.

3.1.2 Functional requirements

» Check health every two minutes

vV VvV Vv VY

Snooze alerts to avoid noise alerts

Keep summary of responses in a log and database
Visualize current status of services health

Encrypt the database to guarantee data security and privacy

Detect when a service goes down immediately and send SMS alert

3.1.3 Non-Functional requirements

>

vV Vv Vv VY

Easy to understand

Informative

Quickness

Easy to add other endpoints that needs monitoring

Have open windows for further development

3.1.4 Tools used

Software requirements

>
>

Apache v2.4.54.2
MySQL v8.0.31

23

» Composer 2.8.4
» Windows 10 OS
» VS Code V1.77.3

Other software requirements are stipulated in the code snippet below:

"require": {
"php": "78.0",
"artisaninweb/laravel-soap": "0.3.0.10",
"codedredd/laravel-soap": "v2.0.0-alpha.0",
"fideloper/proxy": "A4.4",
“fruitcake/laravel-cors": "*2.0",
"guzzlehttp/guzzle": ""7.0.1",
"laravel/framework": "A8.0",
"laravel/passport": ""10.4",

"laravel/tinker": "A2.5"

"require-dev": {

"facade/ignition": "2.5",
"fakerphp/faker": "*1.9.1",
"laravel/sail": ".0.1",
"mockery/mockery": ""1.4.2",
"nunomaduro/collision": "*5.0",
"phpunit/phpunit": "A9.3.3"

Hardware requirements

» Ram 8GB or more
» Processor 2.60GHz 2.59 GHz

3.1.5 Data flow diagram

Figure 2 illustrates the data flow of the proposed monitoring system. The system periodically
initiates polling tasks via scheduled operations on the host computer. Depending on the
service type, it performs different checks: an HTTP GET request for APIs, an HTTP POST
request for web services, and a socket connection attempt for TC Servers. The results of these
checks are stored in a database. If any service is found to be unresponsive or down, an SMS

24

alert is immediately generated. In parallel, the system also verifies whether previously
recorded downtimes have ended. For instance, if a server has been marked as down for the
past 20 minutes and the current polling cycle detects that it is now operational, the system
updates the server’s status to "UP." This mechanism ensures accurate tracking of both active

downtimes and service recoveries

25

Scheduled task in OS

h A4

v

API Web Service

TC Server

\ 4

y

Send HTTP GET Send HTTP POST

Open socket connection

v

&

successful >
YRS

Check if there is DT
that need ending

Send Alert

END

Figure 2: Proposed system dataflow diagram

26

There is a scheduled task in the OS which is triggered every two minutes to poll web services
to check health of web services, APIs and TC Server. The diagram, figure 3, shows the task

which triggers polling after every 2 minutes:

e ey

[€] Web Service Poll Running Multiple triggers defined 9/1/2025 14:44:00
B ZoomUpdateTaskUser-S-1-5-21-178774.. Ready At 05:58 every day - After triggered, repeat every 12:00:00 for a duration of 1 day. 9/1/2025 17:58:00

9/1/2025 14:43:49 (0x800710
6/1/2025 05:58:07 (0x0)

<

General Triggers Actions Conditions Settings History (disabled)

View
|G} Refresh
ﬂ Help

Selected Item

Name:

Location:
Author:

Description:

Web Service Poll

\
OMSVR-SFTP\fintechsftp

Poll web services to check their health

b

¢

Run
End
Disable

Export..

Security options

When running the task, use the following user account:
ALEX

Run only when user is logged on
Run whether user is logged on or not
Do not store password. The task will only have access to local resources

Run with highest privileges

Hidden Configure for: ' Windows 10

Figure 3: Scheduled task in OS

Every two minutes Cloud services Poll is executed and the responses of the polling are saved
and evaluated so that the system can trigger an alert if necessary. On APIs, we send a GET
request to perform health checks on the API, verifying its availability and responsiveness.
This helps us to get a clue about API performance, error rates, and we can verify its

consistency across different endpoints over time.

For web services, we use a POST request to send data to the server for processing. Since data
processing can involve accessing sensitive parts of our system, POST requests are more
secure as they don’t expose sensitive data in the URL. The request sends sample data for
processing to verify that the web service can process it correctly, which helps to reduce false
positive hits. If we get a correct response, it means the service is up; else it will be down,
hence the system generates an SMS alert. Post request allows for more comprehensive testing
of cloud services as it can simulate real-world user interactions and data processing. We can

also detect errors and exceptions that might not be caught by simple health checks, such as

27

L Properties
x Delete
ﬂ Help

pinging or sending a GET request. Monitoring at this level gives us an overview of what our
clients are experiencing, which is the overall aim of this research: to enhance service delivery.
POST request will simulate a more realistic load on cloud services, helping to identify

performance bottlenecks and scalability issues.

For the TC Server, the WS Monitor initiates a socket connection to the TC Server by
specifying the server IP address and port number. The TC Server accepts the connection
request, and a socket connection is established. The WS analyses the responses from the TC

Server to monitor its performance, health, and other relevant metrics like response times.

3.1.6 User interface design
Figure 4 depicts the appearance of a front-end visualization dashboard that is used by the
Operations team on duty to monitor cloud services. It shows whether a service is up or
connected for TC Servers, as well as the response times for cloud services. The colour

codes help to quickly identify services that are down. Green colour reflects that

CIMASY CTRADEV CUSTOMER KYCV & EEZY CREDITY

EQUALS% FINSECV OMICOTRF¥ ONLINE ACCV
SYBRINV ZEEPAY Y 22TC SERVERV B 27TC SERVERV

28 TC SERVERY ~ 30TC SERVERY

something is up or connected, and red tells us that something is down or not connected.

Figure 4: User Interface visualization dashboard

28

For example, from the diagram shows that all other services are down, with the EQUALS
API the only one which is up, with a 10.78s response time. This type of visualization helps the
OPS team to quickly asses performance of services and identify incidents. If something

happens with the SMS Alerting service, we can still have meaningful insights from this

dashboard.

3.1.7 Use Case Diagram

The diagram below, in Figure 5, is a Use Case Diagram for a Cloud Services Monitoring
system. It illustrates the interactions between two user roles, Admin and OPS (Operations),

and the key functionalities of the system.

« Actors:
» Admin: Responsible for configuration and management tasks.
» OPS: Handles operational monitoring and response tasks.
« Use Cases (System Functions):
Login: Both Admin and OPS users authenticate to access the system.
Polling: Periodic checks are initiated to monitor the status of cloud services.

Save status: Monitoring results are saved for logging and analysis.

vV VvV Vv VY

Send alerts: Notifications (e.g., SMS or email) are sent when issues are
detected.

Receive alerts: OPS receive alerts about service issues.
Respond to the issues: OPS take appropriate actions to resolve detected issues.

Add endpoints: Admin can add new cloud service endpoints to be monitored.

vV VvV Vv VY

Visualize: Users can view monitoring results and system status through

dashboards or reports.

29

polling

00
00

—
N

-
R r——

Admin

Respond to the OPS
issues

Add endpoints

Cloud services monitoring

Figure 5: Use case diagram

3.2Data Collection Approaches

The researcher used active data collection methods. Active monitoring is a technique where a
Monitoring tool actively sends requests or synthetic transactions to a web service to assess its
availability, performance, and reliability. Unlike passive monitoring (which collects data

from logs and real user activity), active monitoring proactively tests services, even when

30

there are no real users. Synthetic API monitoring involves actively testing APIs by sending
simulated requests at scheduled intervals. The collected data helps measure API availability,

performance, and reliability. Key data collection methods include:

Response Time Metrics Collection measures the total time taken for an API request to
complete. Breakdown includes TCP Connection Time (Time to establish a network
connection), TLS Handshake Time (Time taken for SSL/TLS negotiation (if HTTPS)), First
Byte Time (Time until the first byte of response is received), Total Response Time (Time
until the complete response is received).
testTCServer(){

$server = 'TC Server (.22);
$data = array();

try{
$socket = @fsockopen("180.10.7.22", 7996, $errno, Serrstr);

if($socket){

$data['status'] = "connected";

->downtimeEnd($server);

return json_encode($data);

$data['status’] = "not connected";

$data['success'] = "failed to reach TC Server";

$data['responseTime'] = 0;

$data['messages'’] = "server could not be reached";

$data['status'] = 0;

$status = O;
From the above code snippet, we try to open a socket connection with server .22 to check its
availability, then our responseTime variable will keep track of the time taken to establish a

connection with the server. If the connection is successful, then we conclude that the server is

up.

31

HTTP Response Status Code Tracking

This is the process of monitoring and analysing the HTTP status codes returned by a web
server or API in response to client requests. This tracking helps determine the availability,
performance, and reliability of cloud services. Tracking these codes allows organizations to
quickly detect problems, such as unauthorized access attempts, API rate limits, or backend
service failures. So here we send Http::get() to monitor an API endpoint and send alerts if it is
unreachable.

$response = Hitp::get('http://180.10.0.117:10011/hello");

if(lisset($response)y

->sendAlerts(null, $response->status(), "Request Timed
Out", "N/A", , $system);

elsef
if($response->status() = 200)

->sendAlerts($system, $response->status(),
"Unreachable", "N/A", , ,);

return response()->json(['status' => 'Down']);

For example, in the above snippet, we are trying to get (‘http://180.10.0.117:10011/hello"). If
the response code is not 200, then we send an alert, meaning the request was not successful,

and the service status is deemed as down.

Both Response Time Metrics Collection and HTTP Response Status Code Tracking are
essential components of synthetic API monitoring. While response time analysis helps
optimize API performance, status code tracking ensures service reliability by detecting

failures.

3.3Population and Sample

A population sample is a subset of individuals, items, or data points selected from a larger
group for research, analysis, or statistical study. The experiments were carried out on CABS
web services. Specifically, the experiment had 4 APIs, 4 TC servers, and 11 Webservices.
These services were actively monitored for 60 days using WS Monitor from the first
November 2024, and the results were recorded for statistical evaluation to determine the

reliability of an exposed high-level endpoint for monitoring of cloud services.

32

3.4Research Instruments

The research was carried out using WS Monitor, which is a research instrument developed by
the researcher. This system can monitor cloud services, including APIs and TC Servers. The
system offers near real-time monitoring of services by doing response time monitoring and

response code tracking to give an overview of the cloud services' health.

3.5Data Analysis Procedures to be used
The data analysis procedure helps identify trends, detect anomalies, diagnose failures, and
improve the efficiency of our monitoring tool. Below is a structured data analysis procedure

for WS Monitor using synthetic monitoring.

1) Collect Monitoring Data

» The tool generates data at regular intervals by sending simulated requests to
APIs.

2) Data Cleaning & Transformation
» Before analysis, the collected data needs to be formatted and cleaned to
remove inconsistencies.
3) Statistical & Trend Analysis

» Statistical analysis helps identify normal vs. abnormal patterns in API
performance.

4) Compute Key Performance Indicators (KPIs)
5) Data Visualization & Reporting
» Visualizing data helps teams understand performance trends and act.
A structured data analysis procedure in synthetic API monitoring ensures that organizations
can detect performance bottlenecks, diagnose failures, and optimize API performance. By
leveraging statistical methods, anomaly detection techniques, and visualization tools, teams

can proactively enhance API reliability, reduce downtime, and improve user experience.

33

Chapter 4: Data Presentation, Analysis, and Interpretation

Introduction

This chapter covers a comprehensive analysis of the performance data collected by WS
Monitor, a cloud service monitoring application, over a period of eight weeks. The
monitoring app, which is hosted locally but designed to track the uptime and availability of
cloud-based services, was evaluated based on its ability to accurately detect service
downtimes. The data includes key metrics for each week, which are True Positives (TP):
Downtimes the app correctly identified, False Negatives (FN): Downtimes that occurred but
were not detected, and False Positives (FP): Downtimes falsely reported. These values are
used to assess the effectiveness of the monitoring solution in identifying incidents that impact
cloud service availability. To evaluate the performance, key statistical metrics such as
detection rate (recall), miss rate, precision, and F1 score are calculated. The results provide
insights into the app’s reliability and highlight areas for improvement. This analysis also
explores potential reasons for missed detections and suggests strategic enhancements to
improve monitoring accuracy, especially considering the limitations of hosting the

monitoring system locally.

4.6 Analysis and interpretation of results

Real-time SMS Alert

The screenshot below, Figure 6, shows a real-time SMS alert generated when a service
goes down. For IT operators, these notifications act like an early warning system; the
sooner they know something is wrong, the faster they can jump in to fix it. Unlike emails
or dashboard alerts, SMS messages cut through the noise because they're instant, direct,
and hard to miss, even if you are away from your desk or working off-hours. In the world
of cloud services, downtime does not just mean inconvenience; it can translate into lost
revenue, broken user trust, and even breach of service agreements. An SMS alert ensures
that operators are immediately aware of a problem before it spirals into something bigger.
It gives them the chance to start troubleshooting right away, mobilize support teams if
needed, or at least communicate proactively with users. In short, service down SMS
alerts keep operators in control, minimize damage, and help maintain the reliability and

reputation of the cloud services they’re trusted to manage.

34

2246 d @ - ae® .. 56%=

< = CABS

Please note that OMICOTRF has been down
since 2025-01-01 08:32:19.833

Please note that EezyCredit has been down
since 2025-01-01 08:32:19.847

Please note that RTGS On Mobile has been
down since 2025-01-01 08:32:19.837

Please note that CTrade has been down
since 2025-01-01 08:32:19.843

Please note that Equals has been down
since 2025-01-01 08:32:19.840

Please note that CustomerKYC has been
down since 2025-01-01 08:32:20.050

Please note that Sybrin has been down since
2025-01-01 08:32:20.270

Please note that Terminal Upload has been
down since 2025-01-01 08:32:20.450

Please note that Online Acct Opening has
been down since 2025-01-01 08:32:19.847

Please note that FINSEC has been down
since 2025-01-01 08:32:19.840

Please note that Zeepa, .as been down

Can't reply to this short code. Learn more

Figure 6: SMS ALERTS generated

Data Encryption

Figure 7 shows that the researcher uses Laravel's crypt::encryptString() method to
encrypt sensitive data before storing it. This method is built on top of a well-respected
encryption standard, AES-256-CBC, which Laravel implements via PHP's OpenSSL
extension. Advanced Encryption Standard is one of the most trusted encryption algorithms in

the world. The "256" in AES-256 refers to the length of the encryption key, 256 bits, which

35

provides a very high level of security. The "CBC" part stands for Cipher Block Chaining, a
mode of operation that enhances encryption strength by using what's called an initialization
vector (IV). Basically, this makes sure that even if you encrypt the same string multiple times,
the output will be different each time, which makes it much harder for an attacker to detect
patterns or guess the original input. In summary, Crypt::encryptString() gives the
application a secure, developer-friendly way to protect sensitive information using a proven

encryption algorithm.

::create([
‘user' => Crypt::encryptString("zZssT2401"),
‘pass’ => Crypt::encryptString("Black@2019"),

::create([
‘user' => Crypt::encryptString("TEMENOSO5"),
*pass’' => Crypt::encryptString(“"Nash@cabs?01"),

::create([
‘user' => Crypt::encryptString("”"SYBRINT2401"),
‘pass’' => Crypt::encryptString(”"Bin@1212"),

::create(|[
‘user' => Crypt::encryptstring(”ZEEPAYel”)J
‘pass’ => Crypt::encryptString(“"React@2021"),

::create([

‘user' => Crypt::encryptString("TEMENOS@2"),
*pass’' => Crypt::encryptString(“”"Nash@cabs?e1"),

Figure 7: Proof of the Encryption standard used
Snoozing of Alerts

The code snippet below, Figure 8, plays a critical role in enhancing the user experience of a
cloud service monitoring application by implementing a "snooze" mechanism for alerts.
When a service goes down, the system avoids repeatedly notifying users every few minutes,
which could become overwhelming and counterproductive. Instead, it checks the time since
the last alert and only sends another one if at least 10 minutes have passed. This helps ensure
that notifications remain meaningful and actionable, rather than turning into background
noise that users might start ignoring. By spacing out alerts intelligently, the system strikes a
balance between being responsive and being respectful of the user's attention, especially

during ongoing incidents that take time to resolve.

36

$downtimeRec = Downtime::where('service', $service)
->where('end’', null)
->orderBy('id', 'desc')
->first();

$start = new DateTime($downtimeRec->start);
$last = new DateTime($downtimeRec->last_notification);

$now = new DateTime(now());

$since_start = $last->diff($now)->format('%i’);

if($since_start >= 10){

try{

$downtimeRec->last_notification = $now;
$downtimeRec->save();

}
catch(Exception $ex){

Figure 8: Proof of snoozing ALERTS

4.2 Statistical Evaluation

Week | Reported Downtimes (Total [FALSE TRUE
Incidents) NEGATIVES POSITIVES

Week | 14 3 11
1

Week |9 1 8

2

Week |5 0 5

3

Week |7 1 6

4

Week |15 4 11

S

37

Week [8 2 6
6

Week |11 0 11
7

Week (6 0 6
8

Total [75 11 64

NB: No false alerts were reported.

Downtime Summarry

reported downtimes

6 not picked

¥ 1. Detection Rate (Recall)

Formula:

Picked 64
l]_ — W e 2 -
i Total Downtimes 75 Loz oo O

This means the app successfully detected about 85% of all downtime incidents.

Figure 9: Recall calculation

38

2. Miss Rate

Formula:

. Not Picked 11
Miss Rate = m = % 0.147 |or 147%

So, approximately 15% of downtime events were missed by the app.

Figure 10: Miss rate calculation

il F1 Score Calculation

Step 1: Precision

TP 64

TP+FP 6a+0 100

Precision =

Step 2: Recall

TP 64 64
ll — e il |
Recall = TN “6a11 75 = 0893

Step 3: F1 Score

(Precision x Recall) ” (1.00 x 0.853)
Precision + Recall 1.00 + 0.853

Fl=2x

0.853
Fl~2 ~ 0.921
SR

¥| F1 Score = 0.921 (or 92.1%)

Figure 11: Precision and F'1 Score calculation

An F1 score of 92.1% indicates that the monitoring app is very effective at detecting real
downtimes with high precision, no false alarms, and strong recall; most real issues were
caught. The only area for improvement is increasing recall, ensuring fewer downtimes go

undetected.

» Precision: 100% — indicating that all reported incidents were accurate (no false
positives).

» Recall: ~85.3% — showing that most, but not all, actual downtimes were successfully
detected.

» F1 Score: ~92.1% — a balanced measure reflecting both precision and recall.

39

4.3 Interpretation

» Overall performance

The app performs reasonably well, detecting the majority of incidents (85%). In many
real-world applications, anything above 80% detection is a decent benchmark,
depending on the criticality of the system.

» Best Weeks
Weeks 3, 7, and 8 had 100% detection rates, showing that under ideal conditions, the
app can be fully effective.

» Worst Week
Week 5 had the highest number of missed downtimes (4 out of 15), with only about
73% detected that week.

» Reliability observation

The app is mostly consistent, but there are occasional drops in performance. This
indicates external factors or intermittent app issues, like power cuts and network

issues, may be affecting reliability.

The app is doing a solid job detecting cloud service downtimes with an 85.3% success
rate. Depending on its criticality, this is a significantly positive result. The fact that it
performs perfectly some weeks suggests the core logic is sound, but enhancements in

infrastructure robustness, detection granularity, and redundancy can help close the

gap.

4.4 Possible reasons for missing downtimes

1. The app is cloud-based but hosted on a local server; it may miss external events

during local outages.

2. The app may not have visibility into all service endpoints or might lack required
monitoring privileges, especially those cloud services with external integration with
other service providers.

3. Misconfigured agents might not report events properly.

4. 1If thresholds for identifying a “downtime” are too loose, for example, ignoring spikes
or latency, true downtimes may be skipped.

5. Insufficient monitoring intervals, might consider reducing polling intervals from 2 to

1 minute.

40

4.5 Suggestions to improve monitoring App Performance
» Increase polling frequency, which means lowering the interval between checks to
catch short-lived incidents.
» Host the app across multiple servers or cloud providers to avoid a single-point failure.
» Add third-party or external monitoring services that run independently to verify
incidents.
» Ensure all critical components are being actively monitored, for example, databases,

APIs, and auth services
» Implement machine learning or statistical anomaly detection for dynamic thresholds.
» Review logs from missed downtimes to find out why they weren’t picked.

» Compare detected downtimes against service-level agreements to quantify gaps.

4.6 A summary of research findings

The analysis of the cloud service monitoring application over an eight-week period revealed
key insights into its performance and reliability. Out of a total of 75 reported downtime
incidents, the app successfully detected 64 incidents, yielding a detection rate of 85.3%. This
indicates a strong but not flawless capability in identifying service disruptions. The remaining
11 incidents (14.7%) were not detected by the app, pointing to potential gaps in monitoring
coverage, response timing, or infrastructure limitations. The missed downtimes were not
evenly distributed; while several weeks (Weeks 3, 7, and 8) showed 100% detection, Week 5
recorded the highest number of missed incidents, suggesting variability in the app’s
performance. The data suggests that the app performs effectively under normal conditions but
may face challenges during periods of increased activity or due to limitations in its current
deployment setup, particularly since it is hosted on a local server, which may be subject to its
own network or system issues. To address these findings, the report recommends
improvements such as increasing monitoring frequency, enhancing logging and alerting
capabilities, and considering cloud-based or hybrid hosting options for higher reliability and
resilience. Overall, the app shows promise as a cloud monitoring solution, but targeted
enhancements are necessary to ensure consistent, high-performance detection, especially for

mission-critical services.

In the course of developing and evaluating the cloud service monitoring application, one of
the notable strengths was the absence of false positives throughout the monitoring period.

This reliability can be largely attributed to the implementation of synthetic transaction

41

monitoring, which played a key role in refining the app’s alerting mechanism. Unlike
traditional monitoring that relies solely on basic indicators such as ping or service port
availability, the app incorporated scripted synthetic transactions that simulated actual user
behaviour. These transactions involved critical workflows such as authentication requests,
data retrieval, and API endpoint validations, allowing the monitoring system to test whether

the application was not just responsive, but functionally operational from a user's perspective.

By validating real-world user scenarios, the app was able to distinguish between superficial
system irregularities, such as momentary network lags or non-critical component failures, and
genuine service disruptions. As a result, the system only triggered alerts when a simulated
transaction failed, ensuring that every alert represented a meaningful incident that impacted
user experience. This approach effectively filtered out noise and false alarms, which are
common in simpler monitoring setups. Consequently, during the entire eight-week evaluation
period, no false positives were recorded, indicating a high level of precision and

dependability in the alerting mechanism.

This finding highlights the value of synthetic transaction monitoring in building a more
intelligent and context-aware cloud monitoring system, especially for services where uptime
alone is not a sufficient indicator of health. It reinforces the conclusion that not only did the
app demonstrate a high detection rate, but it also maintained a strong balance between

sensitivity and specificity, avoiding unnecessary disruptions to support or operations teams.

42

Chapter 5: Conclusion and Recommendations

5.1 Introduction

This chapter wraps up the study by considering the goals, highlighting the main conclusions,
and providing practical suggestions. Over the course of eight weeks, the study's main
objective was to assess how well a cloud service monitoring application could identify
outages in real time. The study sought to ascertain whether the app satisfies reliability and
performance standards by examining reported and missed downtimes in addition to key

metrics like precision and F1 score.Major conclusions drawn

1. The primary objective to evaluate the app’s ability to detect cloud service downtimes was
successfully achieved through comprehensive data collection and statistical analysis.

2. The monitoring app showed high accuracy in detecting actual downtimes, with no false
positives recorded during the observation period.

3. Simulated user transactions played a significant role in improving alert accuracy and
preventing false alarms, making the system more reliable for real-world use.

4. Despite strong performance, the app missed a number of downtimes, indicating room for
improvement in detection sensitivity and monitoring depth.

5. The use of precision and F1 score confirmed the app's strong performance, particularly its

effectiveness in issuing correct alerts without overwhelming the user with noise.

5.2 Further Studies

While this study successfully evaluated the core performance of the cloud service monitoring
app, several areas remain open for deeper exploration and enhancement. Future research

could focus on the following:

1. Further studies could compare the app’s performance against well-established commercial
monitoring tools. This would help benchmark its capabilities and highlight areas needing

improvement.

43

Research could explore how machine learning algorithms might be integrated into the app to
enhance anomaly detection, pattern recognition, and adaptive thresholding based on historical

data.

Investigating how the app performs across hybrid or multi-cloud environments could provide
insights into its adaptability and performance under more complex infrastructures.
A focused study could examine how network delays or infrastructure limitations affect the

app’s ability to detect and report incidents accurately, especially when hosted on local servers.

Research can also investigate the user experience, including how alerts are presented and how

frequently they occur, to minimize alert fatigue and improve actionable response rates.

5.3 Recommendations

1. Enhance detection logic to reduce missed downtimes

2. Promote collaboration between development, operations, and business units using insights

generated by the app to improve service delivery and system design.

3. Use simulated transactions to monitor critical user flows like logins, payments, and data

access to ensure end-to-end functionality, not just system uptime.

4. Even for institutions using local servers, consider cloud-based backups or failover

monitoring instances to ensure resilience.

5. Use simulated transactions to monitor critical user flows like logins, payments, and data

access to ensure end-to-end functionality, not just system uptime.

6. For institutions running hybrid systems, use the app to track both cloud-based and local

infrastructure to maintain a full picture of operational health.

7. Train IT and operations teams on how to interpret alerts and use monitoring dashboards to

make data-driven decisions.
8. Add log and metric correlation to enrich alert context and improve diagnostic insights.
9. Conduct periodic audits of missed events to improve rule accuracy.

10. Explore integration with external monitoring tools for cross-validation.

References

Algahtani, F., Algahtani, A. & Alharbi, K. (2021) '"Monitoring web service reliability using
machine learning techniques', International Journal of Cloud Services Research, 18(3), pp.

1527.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I. and Zaharia, M. (2010) 'A view of cloud computing',
Communications of the ACM, 53(4), pp. 50-58.

Avizienis, A., Laprie, J.-C., Randell, B. and Landwehr, C. (2004) 'Dependability and secure
computing', [EEE Transactions on Dependable and Secure Computing, 1(1), pp. 1-7.

Avizienis, A., Laprie, J.C., Randell, B. & Landwehr, C. (2004) 'Basic concepts and taxonomy
of dependable and secure computing', [EEE Transactions on Dependable and Secure

Computing, 1(1), pp. 11-33.

Amazon Web Services (AWS). (2025). Amazon S3 storage service endpoint. Available at:
https://s3.amazonaws.com/my-bucket-name (Accessed: 16 March 2025).

Bank for International Settlements (2021) Cloud computing in banking: Risk management and

regulatory approaches. BIS.

Barlow, R.E. & Proschan, F. (1996). Mathematical theory of reliability. Philadelphia: STAM.

Bodenstaff, L., Wombacher, A. & Reichert, M. (2011) 'Empirical validation of MoDe4SLA:
Approach for managing service compositions', /4th International Conference on Business
Information Systems, no. 612, pp. 98-110. Available at: https://doi.org/10.1007/978-3-642-
21863-7 9

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J. & Brandic, I. (2010) 'Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as the Sth utility’,
Future Generation Computer Systems, 25(6), pp. 599-616.

CABS. (2024). CABS Half Year results ended 30 June 2024. Available at:
https://www.cabs.co.zw/sites/default/files/CB%20011024%20%20CABS%20Halt%20Y ear%?2
Oresults%20ended%2030%20June%202024-compressed.pdf (Accessed: 16 March 2025).

45

Cardoso, J., Sheth, A., Miller, J., Arnold, J. & Kochut, K. (2014) 'Quality of service for

workflows and web service processes', Journal of Web Semantics, 1(3), pp. 281-308.

Cetin, M. B., Talluri, S. & Iosup, A. (2021) 'Characterizing user and provider reported cloud
failures', arXiv preprint, arXiv:2110.12237.

Chen, J. & Huang, Y. (2018) 'Service availability and reliability in cloud computing: A
review', Journal of Cloud Computing, 7(1), pp. 1-15.

Chen, L., Zhang, W. & Luo, H. (2021) 'Ensuring reliability in high-traffic cloud services',
Journal of Internet Services and Applications, 12(3), pp. 45-56.

Emeakaroha, V.C., Ferreto, T.C., Netto, M.A.S., Brandic, I. & De Rose, C.A.F. (2012)
'CASViD: Application level monitoring for SLA violation detection in clouds', /EEE 36th
Annual Computer Software and Applications Conference, July, pp. 499-508. Available at:
https://doi.org/10.1109/COMPSAC.2012.68

European Banking Authority (2022) Guidelines on cloud outsourcing for financial institutions.

EBA.

European Central Bank (2022) Cloud concentration risk in the banking sector. ECB.

Financial Times (2022) Microsoft Azure outage affects European banking services. Retrieved

from [website]

Garg, S. K., Versteeg, S. & Buyya, R. (2011) 'A framework for ranking of cloud computing
services', Future Generation Computer Systems, 29(4), pp. 1012-1023.

Garcia, M. & Zhou, F. (2020) 'Fault tolerance in microservices architectures', ACM

Transactions on Internet Technology, 20(4), pp. 25-40.

Gomez, L. & Torres, P. (2023) 'Cloud monitoring adoption in Latin America, North America,
and Europe: A comparative analysis', International Journal of Information Systems, 40(3), pp.

112-129.

Gartner (2022) State of cloud computing: Outages, risks, and trends. Gartner.

46

Hashem, 1. A. T., Yaqoob, 1., Anuar, N. B., Mokhtar, S., Gani, A. & Khan, S. U. (2015) 'The
rise of “big data” on cloud computing: Review and open research issues', Information

Systems, 47, pp. 98-115.

IEEE Xplore (2020) Evaluation metrics of service-level reliability monitoring rules. Available

at: https://ieeexplore.ieee.org (Accessed: 16 December 2024).

Johnson, R. & Green, T. (2019) 'Threshold-based monitoring in cloud services', International

Journal of Cloud Services Research, 16(2), pp. 14-29.

Johnson, R. B. & Christensen, L. (2020). Educational Research: Quantitative, Qualitative,
and Mixed Approaches. 7th ed. SAGE Publications, Thousand Oaks.

Kim, S., Lee, H. & Park, J. (2020) 'Distributed monitoring frameworks for cloud-based
systems', I[EEE Access, 8, pp. 105467-105478.

Kohler, A., Tavares, J. & Steinmetz, R. (2020) 'Adaptive real-time monitoring for distributed
systems', ACM SIGMETRICS Performance Evaluation Review, 48(2), pp. 21-30.

Meng, S. & Liu, L. (2013) 'Enhanced monitoring-as-a-service for effective cloud
management’,

IEEE Transactions on Computers, 62(9), pp. 1705-1720. Available
at: https://doi.org/10.1109/TC.2012.165

Montes, J., Sdnchez, A., Memishi, B., Pérez, M.S. & Antoniu, G. (2013) 'GMonE: A complete
approach to cloud monitoring', Future Generation Computer Systems, 29(8), pp. 2026-2040.
Available at: https://doi.org/10.1016/j.future.2013.02.011

Obkio (2023) Real-time network monitoring. Available at: https://www.obkio.com (Accessed:
16 December 2024).

Papazoglou, M. P., Traverso, P., Dustdar, S. & Leymann, F. (2017) 'Service-oriented
computing: State of the art and research challenges', Computer, 40(11), pp. 38-45.

Ponto, J. (2021). "Understanding and evaluating research design: A systematic approach to
methodology." Journal of Research Design and Statistics, 14(2), pp. 150-162.
https://doi.org/10.1080/21582023.2021.1892763

47

Reuters (2024) 'Ttaly's biggest bank Intesa says all tech issues resolved'. Available at:
https://www.reuters.com/markets/europe/italys-intesa-says-home-banking-app-outage-

linkedintense-traffic-2024-12-02/ (Accessed 21 February 2025).

Srinivas, P., Husain, F., Parayil, A., Choure, A., Bansal, C. & Rajmohan, S. (2024) 'Intelligent
monitoring framework for cloud services: A data-driven approach'. In Proceedings of ACM
Conference (Conference’l7). ACM, New York, NY, USA, pp. 1-11. Available at:

https://www.doi.org/10.1145/nnnnnnn.nnnnnnn

Tobias, F., Fabian, K., Pascal, H., Robin, S., Dominik, S. & Andreas, K. (2021) 'Aviator: A

web service for monitoring the availability of cloud services', Nucleic Acids Research, 49(1),

pp. 1-6.

Wang, X. & Liu, Y. (2018) 'Log analysis for anomaly detection in distributed systems', I[EEE
Transactions on Network and Service Management, 15(3), pp. 756-768.

Zheng, Z., Martin, P., Brohman, M. K. & Simanta, S. (2014) 'Service monitoring for
faulttolerant and reliable service-oriented architecture', IEEE Transactions on Services

Computing, 7(1), pp. 74-85.

48

