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ABSTRACT

Malaria caused mainly by Plasmodium falciparum is still a significant public health problem in
rural areas of Zimbabwe. This study develops and contrasts time series forecasting models to
predict monthly malaria incidence and mortality in Mt Darwin District, using historical data from
January 2013 to December 2023. Two model approaches were employed, a standard
Autoregressive Integrated Moving Average (ARIMA) model and an integrated computational
intelligence strategy incorporating Convolutional Neural Networks (CNN), Long Short-Term
Memory (LSTM), and Feedforward Neural Networks (FFNN). ARIMA model selection was
consistent with the Box-Jenkins method, while the hybrid neural network was trained with a 12-
month sliding input window. Model performance was assessed with a held-out 2024 test set with
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and the coefficient of
determination (R2). Optimal ARIMA specifications (2,1,3) for incidence and (1,1,1) for mortality
achieved moderate accuracy (R? = 0.83 for incidence), but unacceptability for mortality (R? = —
0.16). The CNN+LSTM+FFNN hybrid model performed the best among all models with an MAE
of 5.43, RMSE of 96.85, and R? = 0.94 for mortality, and an MAE of 2, RMSE of 2.16, and R? =
0.91 for incidence. 2025-2030 projections of malaria case declines from 1,824 in 2025 to 1,703 in
2030 and of deaths from 46 to 33 over the same period, with seasonal highs in February to April.
These findings illustrate the strength of hybrid neural networks in modeling nonlinear, intricate
patterns of disease in under researched environments. The study recommends that Mt Darwin
District Health officials and the Ministry of Health and Child Care coordinate antimalarial
procurement with NatPharm, augment bed-net and diagnostic kit distribution in high months,
intensify targeted indoor spraying by community health workers, and improve reporting through
DHIS2/Impilo systems.
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Chapter 1

1.0 INTRODUCTION

Malaria continues to pose significant health and economic challenges in many parts of the world,
with Plasmodium falciparum accounting for the majority of severe cases in sub-Saharan Africa
(World Health Organization, 2023). In Zimbabwe's Mt Darwin District, public health officials are
tasked with not only responding to active outbreaks but also anticipating future transmission
patterns to strengthen the efficiency of resource deployment and targeted interventions. As noted
in recent studies, developing accurate models for forecasting malaria incidence and mortality is
increasingly vital for shaping timely and effective public health strategies (Chikoko et al., 2021).

This research seeks to build a forecasting model tailored to predict both malaria incidence and
mortality associated with Plasmodium falciparum in Mt Darwin District. By applying statistical
and computational intelligence methods to historical health data, the study aims to generate
evidence based future forecasts that can support decision making by the District Medical Officer
(DMO), District Health Authorities (DHA), and the Ministry of Health and Child Care (MoHCC).
These projections are intended to improve planning and prioritization of malaria control strategies,
particularly in resource constrained rural settings. (Alhassan et al., 2017).

1.1 BACKGROUND OF THE STUDY

Malaria continues to be a major global health problem, putting about 3.3 billion people in 97
countries, including Zimbabwe, at risk. Each year, it causes around 200 million infections and
about 600,000 deaths (World Health Organization, 2015). In Zimbabwe, Plasmodium falciparum
is the most common cause of malaria, making it a serious public health issue. Studies show that
malaria cases are affected by factors such as climate, economic conditions, and access to healthcare
(Chikoko et al., 2021).

The District of Mt Darwin, which is found in Zimbabwe’s Mashonaland Central Province, is
mostly rural and has different levels of healthcare access with 11 health clinic and 1 hospital. The
district frequently experiences malaria outbreaks, especially during the rainy season when
mosquito populations rise (Chikoko et al., 2021). Analyzing malaria trends in this area is important
for planning effective disease control strategies. The Ministry of Health and Child Care (MOHCC)
collects data on malaria cases and deaths using the DHIS2 and Impilo health information systems,
making it possible to conduct a detailed analysis of malaria trends.

Although there have been studies on malaria patterns in Zimbabwe, very few have focused on Mt
Darwin District. Research highlights the need of Mt Darwin oriented strategies due to the district’s
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unique malaria trends. However, there has been little use of time series forecasting methods to
predict malaria cases and deaths in the area. Using historical data to forecast malaria trends can
help improve response strategies and allow for timely interventions to reduce infections and
fatalities.

This study aims to address this gap by using historical malaria data from the MoHCC to build
predictive models. By applying artificial intelligence-based time series forecasting, the research
will provide useful insights to help improve malaria control efforts in Mt Darwin District. The
findings will assist in better resource allocation and the development of targeted malaria prevention
programs.

1.2 PROBLEM STATEMENT

Malaria continues to pose a significant public health challenge in Zimbabwe, particularly in the
rural district of Mt Darwin. Despite ongoing efforts by the Ministry of Health and Child Care, the
district frequently experiences seasonal outbreaks of plasmodium falciparum malaria often
resulting in avoidable loss of life. This is because the district lacks predictive tools and predictive
statistical insights into the epidemic. Without predictive insight, and planning for future outbreaks,
medical supply distribution intervention strategies become fruitless rather than positive. This
research therefore proposes the development of a forecasting model using both traditional time
series methods such as the Autoregressive Integrated Moving Average (ARIMA) and
computational intelligence driven models, specifically integrated artificial neural networks
(IANNSs) which will see a combination of Feedforward Neural Networks (FFNN) with Long Short
Term Memory (LSTM) and Convolutional Neural Networks (CNN) architectures. The study aims
to provide statistically driven insights into malaria epidemiology in Mt Darwin, ultimately
enhancing the district’s epidemic response systems and contributing to improved public health
outcomes.

1.3 RESEARCH OBJECTIVES & QUESTIONS

1.3.0 OBJECTIVE

1. To build and apply an ARIMA models using the Box-Jenkins approach.

2. To build and apply IANN (integrated artificial neural networks) using computational
intelligence techniques.

3. To compare the forecasting performance of ARIMA and IANN models using appropriate
statistical performance metrics.
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4. To forecast Plasmodium falciparum malaria incidence and mortality trends in Mt Darwin
District for the period 2025 to 2030 using the best performing model.

5. To provide data-driven insights that support malaria surveillance and guide intervention
planning for the District Health Administrator (DHA) and the Ministry of Health and Child
Care (MoHCC)

1.3.1 QUESTIONS

1. s there a statistical trend on plasmodium falciparum malaria cases and mortality from the
historical data that can be mathematically computed?

2. (@) Can atime series model be developed to estimate future plasmodium falciparum cases
incidence?
(b) Can a time series model be developed to estimate future plasmodium falciparum malaria
mortality?

3. How do seasonal variations affect cases and mortality incidence of plasmodium falciparum
malaria in the district?

4. s there a significant difference in forecasting accuracy of traditional time series models
compared to computational intelligence driven integrated artificial neural network hybrid
models in forecasting of the plasmodium falciparum epidemic?

1.4 SCOPE OF THE STUDY

This research aims to build a forecasting model tailored to predict trends in plasmodium falciparum
malaria incidence and related mortality in Mt Darwin District. It utilizes historical records
extracted from the Ministry of Health and Child Care’s DHIS2 and Impilo health systems, covering
previous reporting periods and extending projections through to 2030. The study compares
classical ARIMA models with integrated artificial neural network (IANN) approaches to
determine which model best captures temporal disease patterns. Although the findings will support
evidence based planning for the District Health Authorities (DHA), District Medical Officers
(DMO), and the MoHCC, they are designed specifically for Mt Darwin and may not generalize to
other settings.

1.5 SIGNIFICANCE OF THE STUDY
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The research study seeks to offer new insight into the patterns and trends of plasmodium
falciparum malaria incidence and mortality in Mt Darwin District, a region that has received
limited attention in previous forecasting research. By applying both traditional statistical models
and hybrid computational intelligence approaches, the project aims to support the District Health
Administrator and District Medical Officer with tools that can strengthen early detection and guide
health planning. Reliable projections can improve the timeliness and efficiency of malaria response
strategies in this high burden setting.

In Mt Darwin, where seasonal outbreaks often strain limited health resources, enhancing predictive
capacity is essential. This research addresses a practical need for forward looking planning tools
in epidemic management. At the national level, the research study supports Zimbabwe’s broader
health strategy by promoting the integration of local data and forecasting in policy and resource
allocation. Its approach to combining computational models with epidemiological data may also
offer lessons for other rural malaria endemic regions and contribute to ongoing global efforts
toward malaria control and elimination.

Aligned with education 5.0 and the Heritage based curriculum, the study reflects innovation driven
problem solving, fostering the integration of cutting edge technologies such as computational
intelligence into real world socio-economic challenges faced by Zimbabwe. It also contributes to
the academic fields of public health informatics, application of computational intelligence and
statistics, offering a valuable case study for future interdisciplinary research in low resource

settings.

1.6 ASSUMPTIONS OF THE STUDY

e The study assumes that the secondary data obtained from the DHIS2 and Impilo systems
is complete, reliable, and free from reporting errors.

e It is assumed that the time series data used in the analysis does not exhibit autocorrelation
that would violate model assumptions.

e No major structural changes such as new variant outbreaks and health system disruptions
occurred during the study period.

e The malaria incidence and mortality data are considered homogeneous across Mt Darwin
District.

1.7 LIMITATIONS OF THE STUDY
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e This research is limited to time series forecasting methods and does not incorporate
alternative statistical or machine learning techniques.

e The analysis is restricted to Mt Darwin District therefore; the results may not be
generalizable to other regions of Zimbabwe.

e The forecasting model is built only on historical time series data, excluding explanatory
variables such as rainfall, temperature, and population mobility which are known to
influence malaria dynamics.

e The research study does not account for possible data incompleteness in the DHIS2 and
Impilo datasets which could impact model accuracy.

1.8 DEFINITION OF KEY TERMS

1. Malaria: Malaria is a potentially fatal illness resulting from infection by Plasmodium
parasites, which are transmitted to humans through bites from infected Anopheles
mosquitoes (WHO, 2023).

2. Plasmodium falciparum is the most lethal of the five malaria parasite species known to
infect humans. It is highly prevalent in sub-Saharan Africa and accounts for the largest
proportion of malaria-related fatalities worldwide (Centers for Disease Control and
Prevention, 2023).

3. Time Series: A sequential collection of data points measured at consistent time intervals.
(Brockwell and Davis, 2016).

4. Forecasting: Estimating future values based on historical data through the application of
statistical models (Hyndman and Athanasopoulos, 2018).

5. ANN: Artificial Neural Networks are computational models structured in layered
networks of interconnected processing units. These systems are loosely inspired by the
biological brain and are capable of recognizing intricate patterns within data by
transmitting signals through multiple weighted connections (Russell and Norvig, 2016).

6. Feedforward Neural Network: A type of ANN where information flows in a single
direction from input to output layers, without cycles or loops. (Mapuwei et al., 2023).
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7. Convolutional Neural Network: A specialized ANN architecture designed to process grid-
like data, especially effective in extracting spatial features through convolutional layers.
(LeCun et al., 2015).

8. Long Short-Term Memory: A type of recurrent neural network (RNN) that captures long-
term dependencies in sequential data through memory cell structures, overcoming the
vanishing gradient problem common in traditional RNNs (Hochreiter and Schmidhuber,
1997).

9. Integrated Artificial Neural Network: A hybrid model that combines multiple ANN
architectures into a unified structure to enhance prediction accuracy and learn both spatial
and temporal features from time series data (Zhang et al., 2021).

10. The Autoregressive Integrated Moving Average (ARIMA) model is a classical approach
to time series forecasting that combines autoregressive terms, differencing to ensure
stationarity, and moving averages to account for past error patterns (Box & Jenkins,
1976).

11. Mt Darwin District: A rural district in Zimbabwe’s Mashonaland Central Province.

1.9 CHAPTER SUMMARY

As malaria continues to pose significant health challenges in Mashonaland Central Province
particularly in rural districts like Mt Darwin, there is a need for localized forecasting models that
support early detection and better intervention. This chapter introduced the background and
validation for the study, outlined the research objectives, discussed the assumptions and limitations
guiding the investigation. These elements provide the foundation for the upcoming literature
review which will examine the theoretical and empirical basis for applying time series and
computational intelligence hybrid neural network models in forecasting malaria incidence and
mortality.
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Chapter 2

2.0 INTRODUCTION

This chapter reviews theoretical and empirical studies on time series forecasting, focusing on its
application in artificial intelligence driven models and traditional forecasting methods for malaria
incidence and mortality. It also highlights key findings in the field and provides an overview of
time series concepts.

2.1 THEORETICAL LITERATURE

2.2.0 Plasmodium Falciparum Malaria

Malaria is known to result from plasmodium parasites which are spread by a bite of a female
anopheles mosquito. This plasmodium has four known species which are plasmodium falciparum,
plasmodium vivax, plasmodium ovule, and plasmodium malaria, with plasmodium falciparum
responsible for most malaria deaths, especially in Africa. Malaria parasites enter the bloodstream
of the host person to destroy essential red blood cells, the destruction leads to fever, flu-like
symptoms with vomiting and diarrhea, and if left untreated, the condition may progress to coma
and ultimately prove fatal. (Alhassan et al., 2017).

2.2.1 Malaria Epidemiology in Zimbabwe

Zimbabwe has achieved noticeable reductions in malaria cases and mortality rates through various
targeted health interventions however, rural districts continue to face persistent challenges due to
limited access to healthcare services (Mutambara et al., 2019). Plasmodium falciparum, the
dominant species responsible for malaria in the country continues to pose a significant public
health burden. The disease's transmission patterns are shaped by a combination of environmental
conditions, economic constraints, and the poor healthcare system in the country (Chikoko et al.,
2021). Time series forecasting has proven effective in malaria control by enabling timely
interventions. Chikoko et al., (2021) demonstrated how forecasting models successfully predicted
malaria cases, improving planning and control efforts. Forecasting has also been linked to faster
response times during peak transmission seasons, reducing morbidity and mortality (Mavundla et
al., 2020).

Despite advancements in data collection and analysis existing forecasting methods often struggle

to accurately predict malaria incidence due to the complex interactions between environmental,
climatic, and socio-economic factors (Briar et al., 2020). The lack of region specific models further
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limits intervention effectiveness, as generic approaches fail to address local epidemiological
dynamics (Muller et al., 2019).

2.2.2 TIME SERIES

Box, Jenkins, Reinsel, and Ljung (2016) describe a time series as a series of observations collected
sequentially over time. Similarly, Brockwell and Davis (2016) define a time series as a collection
of data points, X , where each point is recorded at a specific time t. A discrete time series occurs
when observations are made at distinct points in time, while a continuous time series is generated
when data points are recorded continuously over a time interval, such as when T, = [0,1].

2.2.3 TIME SERIES ANALYSES

Mapuwei et al., (2022) explain that time series analysis helps to uncover the underlying processes,
understand how data changes over time and assess the impacts of planned or unplanned activities.
In addition, Weigend and Gershenfeld (1994) highlight that the three primary goals of time series
analysis are forecasting, modeling, and characterizing the time dependent behavior of data.

2.2.4 TIME SERIES FORECASTING

Lim and Zohren (2021) define time series forecasting as the process of predicting future values of
a target variable Y;, for a specific entity i at time t. These entities represent logical groups of
temporal data, such as measurements of vital signs from various patients in medicine, which can
all be observed simultaneously. They further explain that in the simplest form of forecasting one-
step ahead models the prediction takes the following form:

Yit+1 = f( Yitk, Xitk,Si) ===mmm=mmm==mmmmmmmmmmmm oo oo oo (2.1)
Where, Yi,+1isthe model forecast

Yi,t-k = () , Xi,t-k :t = () are observations of the target and exogenous inputs
respectively over- back window Kk, S;.

2.2.5 COMPONENTS OF TIME SERIES
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Time series data typically exhibit four structural elements which are trend, seasonality, cyclical
behavior, and random fluctuations. According to Shumway and Stoffer (2017) recognizing these
components is essential for selecting suitable forecasting models. The trend reflects gradual, long-
term movements in the data, often driven by macro-level influences such as policy reforms or
demographic shifts (Davis and P.J., 2002). Mapuwei et al., (2022) noted that seasonality is the
periodic variations that repeat at consistent intervals, like monthly or quarterly changes often
shaped by climatic or institutional schedules and cyclic behavior, while also recurring, unfold over
longer durations and are typically influenced by broader social or economic dynamics, making
them harder to anticipate with precision (R.H. and Stoffer, 2017). Lastly, Woodward et al., (2017)
described irregular components as noise or non-recurring anomalies that obscure underlying trends
and are not explained by systematic patterns.

2.2.6 ASSUMPTIONS OF TIME SERIES

Several statistical assumptions support time series modeling, and ensuring these conditions are
met enhances the reliability of the forecasts. One key assumption is stationarity, where the time
series should exhibit no systematic change in its mean or variance, and all seasonal or periodic
influences should be removed (Chatfield, 2003). Non-stationary data can often be transformed
using differencing or logarithmic adjustments. Common tests for stationarity include the
Augmented Dickey-Fuller (ADF) test and root tests (Mapuwei et al., 2022). Tsay (2010)
distinguished between strict stationarity, which implies that the entire distribution remains
unchanged over time, and weak or second-order stationarity as where only the mean, variance, and
auto covariance remain constant. Another critical assumption is normality, which assumes that the
data follow a normal distribution and violating this assumption may lead to inaccurate parameter
estimates. Assessment testing tools include histograms, box plots, Q-Q plots, and probability
distribution visualizations (Das and Imon, 2017). Independence of residuals is also important as it
means that autocorrelation should be minimal and this is typically assessed using the Durbin-
Watson test, residual plots, and ACF/PACF plots (Mapuwei et al., 2022). Finally, according to
Mapuwei et al., 2022 homoscedasticity requires that the residuals maintain constant variance,
which can be evaluated using scatter plots that show a consistent spread around a central line with
no visible trend.

2.2.7 Models in Time Series Analysis

Throughout data science evolution, there has been a shift from traditional time series models, such
as ARIMA and exponential smoothing as noted by Box, G. E. P., and Jenkins, G. M. (1976), to

-9-|Page




modern deep learning techniques like ANNs RNNs, LSTMs, and IANN. This research will utilize
both methodologies.

2.2.7.1 Traditional Time Series Models

(@) The Moving Average (MA)

Tsay, (2010) defined the moving average (MA) as the average of a specified number of time series
values surrounding each point t in the series. An example of a moving average series with order q
is denoted as {MA (q)}

Yt - at + Gat_l + Bzat_z + + ant—q ------------------------------- (2-2)

(b) Autoregressive (AR) Model

A sequence is considered autoregressive if its current value is influenced by past values, along
with a random shock (DaHye et al., 2021). Thus,

Yo = @1Ye-1+ PoYe—z + -+ OpYep + @ mmmmmmmmmmmmmmmmmmmm e (2.3)

Where
Y;— Current Value, Y;_,, is the value at lag p

a, — White noise error
@103, ... , @, — Parameter of the model which is estimated from the data.

(c) Autoregressive Moving Averages (ARMA) Model

Tsay (2010) described the ARIMA model as a combination of autoregressive (AR) and moving
average(MA) models, compacted to minimize the number of parameters and ensure simplicity in
its parameterization. Similarly, Box, Jenkins, Reinsel, and Ljung 2015 referred to ARIMA as a
blend of both AR and MA models. They further argued that when the equation of the first-order
AR model approaches the starting point it will lead to an infinite moving average. To effectively
use the ARMA model, the values p and q values must be determined, the value of p corresponds
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to significant terms in the autocorrelation function (ACF), and g represents the number of
significant terms in the partial autocorrelation function (PACF). If a time series obeys an ARMA
(p, g) model, it is considered to exist.

Yt =0+ ®1yt_1 + szt_z + -+ @q Et—q """""""""""""""" (24)

, E¢—q Is considered to be the white noise process.

P.J Brockwell and R. A. Davis (2001) argued that {X,} is said to be ARMA(p, q) process if {X;}
is stationary and if for every t,

Xt - <p1Xt_1 — gopXt_p = Zt + let—l + .-+ Gth_q """"""""" (2.5)

where {Z,} ~ WN (0, %) and the polynomials (1 — ¢,Z —--—@,Z")
and (1 + 01z + ... + 6 Zq) have no common factors.

(d) SARIMA MODEL

A SARIMA, or Seasonal Autoregressive Integrated Moving Average, is described by
Ramasubramanian (2015) as a model that can be applied to both seasonal and non-seasonal data.
It adjusts for seasonal variations in the data to achieve stationarity. The model is defined as follows:

(1-0 BA-0,8)A-A -y = (1+0:,8)(1 + 8,8%, -----(2.6)

, S is seasonal lag period
B is the backshift operator

&; are noise

2.2.7.2 Artificial Neural Networks
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(a) Overview of ANN

Artificial neural networks (ANNSs) are a wide-ranging category of machine learning models
designed based on how biological neural networks, such as the human brain process information
and a make decision. These networks are made up of layers of interconnected nodes, or neurons,
which apply various activation functions to transform input data for tasks like predictions and
classifications. Bhimala, Patra, Mopuri, and Mutheneni (2021). In a similar vein, Mapuwei et al.,
(2022) describe an artificial neural network as an information processing system created to
generalize mathematical models based on human neural biology as shown by figure 2.2.1 below.

Figure 2.2.1 Artificial Neural Network Visual Architecture

ENJM. K]

(b) Integrated Artificial Neural Networks (IANN)

Zhao et al., (2020) describe integrated artificial neural networks (IANNs) as advanced hybrid
frameworks that bring together different deep learning architectures to enhance forecasting
precision. Verma et al., (2021) and Farooq and Bazaz (2021) supported their theoretical potential
through applications in epidemic modeling. However, these models were implemented in large,
urban populations with rich datasets a contrast to the data scarcity and reporting delays common
in Mt Darwin District. This study builds on those frameworks while tailoring them to a rural,
malaria endemic setting where seasonality and limited data availability challenge predictive
accuracy.
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(c) Multilayer Perceptron (MLPS)

The figure shown below is a multilayer perception an artificial neural network as described by
Nielsen et al. (2016) are neural network model which has multiple hidden layers (the middle
layers), the output layer (the rightmost) which houses the output neurons and final the input layer
(the leftmost) which houses the input neurons. A good example of the MLP models is the FFNN

feedforward neural networks as shown by the diagram below.

Figure 2.2.2 Multilayer Perceptron Model Architecture

MULTILAYER PERCEPTE ON MODEL ARCHITECTURE
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(a) Feed-Forward Neural Networks

FFNN feedforward neural networks are neural networks where the information is always fed
forward and never fed back and their other characteristic is that the output from one layer is used
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again in the next layer and is different from recurrent neural networks which have feedback loops.
(Nielsen et al. 2016)

According to Mapuwei et al., (2022), the structure is defined by the number of hidden and output
layers, and the feedforward neural network structure can be generalized with the assistance of the
following equation.

I - (H1; HZ; H3) "-)HN) - 0! ------------------------------------------- (2'7)
Where
| = input nodes

H,= total of neurons in hidden layer, determined by the formula X =

f (S, Wik Yj + 6)

and o = the number of neurons in the output layer, determined by Y =

O, Wk + Yk +6)

The figure below shows the architecture of an FFNN (6-(4,3)-1) model.

Figure 2.2.3 FENN (6-(4,3)-1) Architecture Model
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According to Nielsen et al., (2016) the output is based on the perception rule which can be written
as

_(0ifwx+b<o0
OUtpUt_{l ifwx+b >0 (2.8)

Where w*x =X;WjXj,wand x are vectors whose components are weights
and inputs, respectively.

and b represents perception’s bias , b = —threshold

2.2.7.3 FFNN Model Training and Selection

Training a neural network is the process of teaching it to make accurate predictions and decisions
based on its internal parameters which are weights and biases based on examples of input-output
data. According to Mapuwei et al., (2022), the whole process is primarily based on determining
weights and the number of neurons in the network.

(a) Forward Propagation:
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This a training process, where data is fed starting from the input layer moving through the hidden
layers to the output layer and in each layer, data is transformed by weights and activation functions,
which helps the network learn complex patterns.

(b) Back Propagation:

The method is used to update the weights and biases of the network in order to minimize the loss
function by calculating the gradient or rate of change of the loss concerning each weight by
applying the chain rule of calculus. This process is done by propagating the error backward through
the network (from the output to the input) and updating the weights to reduce the error.

(c) Model Selection

Husseien et al., (2017) assessed the predictive accuracy of different neural network models for
malaria incidence using data from Sudan. Their evaluation relied on mean square error (MSE) and
root mean square error (RMSE) as performance metrics. The model yielding the lowest error
values was considered the most effective for forecasting purposes.

R T £ L (2.9)

RMSE = \/%2{}’:1(1/1: i (2.10)

2.2 EMPIRICAL LITERATURE

ARIMA MODELS 2.3.1

A study by Mapuwei et al., (2022), utilized the Box-Jenkins methodology in building an ARIMA
model to forecast tobacco production in Zimbabwe. The ARIMA (1,1,0) with no seasonality was
identified as the best model. The data was nonstationary as the ADF test failed to reject the null
hypothesis as the p-value obtained was 0.6106 > 0.5 and also evidenced by the absence of constant
variation although a decreasing trend in tobacco production was noticed.
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In their study, Alhassan et al., (2017) applied the Box-Jenkins approach to develop an ARIMA
model for predicting malaria incidence in the Kasena Nankana Municipality. The objective was to
identify a reliable model for short-term forecasting, with the ARIMA(1,0,1) configuration
emerging as the most suitable after conducting standard adequacy tests. This model was then
employed to project monthly malaria cases over a two-year horizon. Findings revealed a steadily
increasing trend, shaped by a quadratic growth pattern, prompting the authors to recommend
proactive interventions by the Ministry of Health. These included awareness campaigns to address
the persistent nature of the disease and resource planning within health facilities in anticipation of
future changes in case volumes.

Kumar et al., (2014), noted that ARIMA models were the simplest and yet the most reliable time
series analysis tool for malaria forecasts after he had employed them to forecast malaria cases from
2006 to 2013 in the rural areas of Najafgarh, India. ARIMA (0,1,1) (0,1,0)*?, was the best fit with
a seasonal component that was evidenced by ACF autocorrelation function which showed a
significant peak at a lag of 12 months (autocorrelation = 0.675, Box-Ljung statistics (P=0.000)).
Since the seasonal pattern was detected an ordinal R- squared was used as goodness of fit statistics,
and it indicated a value of 0.725 meant that the model could explain 72.5% variability in the time
series data. While Kumar highlighted ARIMA's simplicity and reliability in capturing short term
patterns of malaria incidence, its effectiveness is limited when dealing with nonlinear and
nonstationary data, which is often characteristic of malaria outbreaks. In contrast, Bhimala et al.,
(2021) demonstrated that artificial neural networks outperform traditional statistical models in
capturing complex nonlinear relationships in malaria cases. However, the implementation of
ANNSs requires large datasets and more computational resources, which may not always be
available in low resource settings like rural Zimbabwe. This contrast highlights the potential value
of hybrid models that balance interpretability with predictive power.

NEURAL NETWORK MODELS 2.3.1

Yamak et al., (2020) conducted a comparative analysis of three different machine learning models
in making a time series forecast of bitcoin prices. The models were ARIMA, GLU (gated recurrent
units) and LSTM (long short-term memory), the ARIMA gave best results at MAPE =2.76% and
RMSE = 302.53 which was outperformed by GLU model however the LSTM was chosen as the
best model with 3.97% and 381.34 MAPE and RMSE respectively.

Mapuwei et al., (2020) conducted a comparative study of an ARN (FFNN) feedforward neuron
network and (SARIMA) seasonal autoregressive integrated moving average in an effort to model
city council ambulance demand. Performance calculation suggested an FFNN with an MAE =94.0
RMSE =137.19 and test value p = 0.493(>0.05) was the best model for short-term annual forecasts

rather than SARIMA with performance value of 105.71,125.28 and p= 0.005(<0.05), respectively.
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Research work on integrated artificial neural networks by Zhang et al., (2021) demonstrated the
value of combining neural architectures. In his research, he reviewed hybrid deep learning
frameworks, the CNN + LSTM with attention mechanisms outperformed single architecture
models in time series application. Similarly, Wang and Li (2020) utilized a CNN-LSTM fusion for
traffic flow prediction and their research showed that with convolutional layers to extract local
temporal features LSTM layers then model for improved accuracy. Both the research studies
although independent provide a strong precedent for integrated artificial neural networks compared
to single architecture neural networks.

Epidemic research work by Verma, Mandal, and Gupta (2021) demonstrated that a CNN-LSTM
hybrid model outperformed classical approaches in forecasting COVID-19 cases in India by
effectively capturing both spatial and temporal dependencies. Similarly, Bhimala et al., (2021)
showed that incorporating weather variables into LSTM-based models significantly improved the
prediction of COVID-19 case trends.

RESEARCH GAP 2.4

The research gap exists in the lack of localized studies on the application of time series forecasting
for Plasmodium falciparum malaria incidence and mortality trends in the Mt Darwin District.
Additionally, there is a need for comparative studies between modern computational intelligence
driven integrated artificial neural network models and autoregressive integrated moving average
(ARIMA) models. Previous studies by Alhassan et al., (2017) and Kumar et al., (2014) were
conducted primarily in India, focusing on the municipality of Kasena Nankara and the rural
community of Najafgarh, respectively, and only utilized the autoregressive integrated moving
average (ARIMA) model.

PROPOSED CONCEPTUAL METHOD 2.5

This research suggests building a time series prediction models for forecasting Plasmodium
falciparum malaria incidence and mortality trends. The methodology starts with the building of a
classical ARIMA model based on the Box-Jenkins method. In tandem, an Integrated Artificial
Neural Network (IANN) model, mainly centered on a Feedforward Neural Network (FFNN), will
be built and compared. Additionally, advanced hybrid architectures combining FFNN with Long
Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) will be implemented to
enhance predictive performance.
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Each model will be trained using historical data from January 2013 to December 2023 and
evaluated on 2024 data. Performance will be assessed using standard metrics such as RMSE, MAE,
and R2. The best-performing model will then be selected and used to forecast monthly and yearly
malaria incidence and mortality from 2025 to 2030.

The proposed conceptual flowchart, presented in the figure below, outlines the methodological
framework for model development, evaluation, and forecasting.

Figure 2.2.4 Proposed Conceptual Flowchart Structure
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CHAPTER SUMMARY 2.6

This chapter reviewed both the theoretical and empirical literature on the application of time series
forecasting to plasmodium falciparum malaria incidence and mortality. Traditional time series
models such as ARIMA and SARIMA were discussed for their strength in handling linear time
series patterns, while the growing role of ANN models driven by computational intelligence was
highlighted for their capability in capturing nonlinear dependencies. A research gap was identified
in the limited application of ANN computational intelligence driven hybrid models within the rural
and malaria endemic district of Mt Darwin. Based on the literature, this study adopts a
computational intelligence hybrid approach with the integration of CNN, LSTM, and FFNN
architectures due to their demonstrated strength in capturing both short and long term temporal
patterns in complex epidemiological datasets. A conceptual framework was also presented to guide
subsequent data analysis and interpretation. The next chapter outlines the research methodology
and data collection techniques used in this study.
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Chapter 3

3.0 INTRODUCTION

This chapter presented the research methodology used in the study, including the research design,
data sources, sampling procedures, research tools, and analytical techniques. A quantitative
approach was adopted, using time series forecasting methods to analyze historical malaria
incidence and mortality data in Mt Darwin District. Specifically, ARIMA models and integrated
artificial neural network (IANN) models were applied to generate forecasts. The chapter also
addressed ethical considerations regarding the use of secondary health data according to the Public
Health Act of Zimbabwe.

3.1 RESEARCH DESIGN

In this study, the researcher used a quantitative research design, a methodology that predicts future
outcomes by analyzing patterns and trends in historical data. Quantitative research focuses on
collecting numerical data and applying statistical and computational techniques to analyze
relationships, test hypotheses, and make future predictions. This research included two variables:
the number of malaria incidences at time t and the mortality rate (number of deaths) at time ¢.

3.2 SECONDARY DATA SOURCES

This research study primarily relied on secondary data which was drawn from the two official
electronic health records (EHR) platforms which are Impilo health information systems and dhis2
system. Developed with input from local stakeholders and licensed under the Ministry of Health
and Child Care (MoHCC), Impilo is a healthcare management system designed to optimize the
management of health data across Zimbabwe by enabling healthcare providers to access, manage,
and share patient information more efficiently. (impilo health systems, 2024). According to DHIS2
(2023), the district health information software 2 (dhis2) is an electronic health records
management system that is used by district health authorities to collect, store, and analyze health
related data to improve decision-making.

3.3 TARGETED POPULATION AND SAMPLING PROCEDURES

The research study primarily focused on the Mt Darwin District which is found in one of the
biggest province Mashonaland Central Province. The researcher identified the district as a malaria
endemic hotpot area making it more suitable to conduct the study for time series forecasting of
plasmodium falciparum malaria incidences and mortality rate. Through the application of the
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purposive sampling technique, the study took into account historical data on the number of malaria
incidences and mortality from 2013 to 2023 to give a total of 120 monthly data observations points
as the sample size for each time series variable.

3.4 RESEARCH INSTRUMENTS

The researcher mainly used computational tools as research instruments. Microsoft Office
packages including Excel and Power Bl were utilized. Excel was used as the main data birth-base
after downloading it from the dhis2 servers and Power BI for visualization of results tables and
plots. Then the R 4.4.1 statistical software and python 3.10 in google colab development
environment, and visual code development environment were used for advanced data analytic such
as data reprocessing, model building, model testing and performance measurements for the
ARIMA and IANN (FFNN) based models respectively.

3.5 DATA ANALYSIS PROCEDURES

The main objective of this project was to build an adequate time series model for forecasting future
Plasmodium Falciparum malaria incidence and mortality rates for Mt Darwin district. Data for the
research was secondary data retrieved from the dhis2 server stationed at Mt-Darwin District
Hospital for the years 2013 through to 2024. The 2013 to 2023 data was used for model building
whilst 2024 data was used for model performance checking and testing and forecasts are to be
made for the year 2025 to 2030. The statistical techniques used in model building and forecasting
were the Box-Jenkins methodology for building ARIMA models and integrated artificial neural
networks based on a feed-forward neural network an ANN process of model analysis.

3.6 THE BOX-JENKINS METHODOLOGY FOR BUILDING ARIMA
MODEL

Box-Jenkins method, named after its creators George Box and Gwilym Jenkins, who introduced it
for the first time in the 1970s, is typically used for the prediction of economic, financial, health,
and other time-series data. Box-Jenkins offers a structured method to time series data modeling
and forecasting mainly by utilizing ARIMA models (Box and Jenkins, 1976). Mapuwei et al.,
(2022) provide three iterative steps in the method: model identification, parameter estimation, and
diagnostic checking while Alhassan et al., (2017) added forecasting as the fourth iterative step. In
addition, the method can be applied in datasets with at least 30 observations and was readily
adopted by the researcher as the sample database that was utilized in this research study contained
120 observations for each time series variable.
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3.6.0 MODEL IDENTIFICATION (SELECTING AN INITIAL MODEL)

The researcher first determined whether the series is stationary or not by considering the graph
ACF. According to Alhassan et al., (2017), if the ACF graph values either cut off fairly quickly or
die down extremely quickly then it is considered stationary otherwise if the ACF dies down slowly
it is considered non-stationary. The researcher learned that the series was not stationary and could
be converted to stationarity by differencing the series and once stationary series status was
obtained, the form of the model to be used was identified.

The autocorrelation function (ACF) can be calculated using the formula below

k =YY, Covariance at lag k variance ----------------=---==-------- (3.1)

PACEF is calculated by the formula below

Ky = Corr(Yy, Yokl + Yio1, Yezs oo YViogyq) -mmmmmmmmmmmmmmmmm oo (32)

3.6.1 MODEL ESTIMATION AND EVALUATION

Alhassan et al., (2017) suggest that once the model has been identified, the next stage in the Box-
Jenkins methodology chronologically sequence is to estimate parameters, the main method of
estimating parameters is the maximum likelihood estimation and with the help of R-console
statistical software the researcher utilized the method.

3.6.1.0 MLE ESTIMATION OF ARIMA MODEL OVERVIEW

An ARIMA model is denoted as ARIMA (p, d, q) where:
P is the order of autoregressive (AR) part
d is the degree of differencing required to make the series stationary

q is the order of moving average (MA) part.

3.6.2 MODEL CHECKING (goodness of fit)
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In this iterative step, the researcher checked for model adequacy by considering the normality
(normal distribution) of the residuals from the ARIMA model. Alhassan et al. (2017) argued that
overall model adequacy is done using the Ljung-box statistic given below:

rk2(e) N

Qm =n(N+2) ¥y —— = ~X° M= [ =mmmemmmmemmmnem oo (3.3)

,Where : e is the residual autocorrelation at lag
n is the number of residual
m is the number of times lags is included in the test.

If the p-value associated with the Q statistic is small, then the model is considered not inadequate,
and if else the researcher continued with the analysis.

3.6.3 FORECASTING

According to the Box-Jenkins methodology, forecasting involves determining the expected values
at a specific point in time (Alhassan et al., 2017). After confirming that the model fit the data well,
the researcher proceeded with multi-step ahead forecasting of future values. While the accuracy of
the forecast is generally expected to decrease as the forecast horizon extends, the forecast was
based on the model's coefficients and past observed values.

3.7 THE ARTIFICIAL NEURAL NETWORKS METHODOLOGY

DATA PREPROCESSING 3.7.0

Data preprocessing was the first and most critical step in designing an Artificial Neural Network
(ANN). This process included data cleaning, coding, normalization (standardization), and splitting
the data into training, validation, and test sets according to the preprocessing setup by Mapuwei et
al., (2020). The researcher performed data cleaning by addressing missing values, and replacing
them with measures of central tendency from the respective rows or columns.

noy
i=1Xi

Arithmetic mean = FE— —omm oo (3.4)

, X; = each data point and n is the number of data points

Median = if there is an odd number of data points, it is the middle value in a sorted dataset. If there
is an even number of data points, the median is the average of the two middle values.
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Mode is the value that occurs most frequently in the dataset.

Data normalization was done to ensure that all input features are on a similar scale preventing
some features from dominating others and making the training process more stable and efficient.

Min-max Normalization

_ X—min(x) (3.5)

X e 2
normalized max(x)—min(X)

Z-score Standardization

X standardization = % ------------------------------------------------ (3.6)

, Wisthemean, oisthe standard deviation
3.7.1 MODEL TRAINING AND TESTING SET

At this stage, it is crucial to divide the processed data into a model building (training) set and a
testing set, with a larger percentage of the data allocated to the model building set and a smaller
percentage to the testing set (Mapuwei et al., 2020). The researcher first used the model-building
set to develop the Feed-Forward Neural Network (FFNN) model, while the testing set was used to
evaluate the forecasting accuracy.

3.7.2 FEED-FORWARD NEURAL NETWORK ARCHITECTURE

As noted by Mai et al., (2021), selecting the optimal number of hidden layers in a neural network
lacks a standardized guideline. In most cases, researchers rely on empirical testing and iterative
adjustments to identify a suitable architecture. This process often involves applying a generalized
structural formula as a starting point.

I — (Hy, Hy, Hy, oo, Hy) — 0, =======mmmmmmmm e e e e e e e (3.7)
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, Where
| = input nodes

H,, = neurons in the hidden layer, determined by the formula

e O A g g I ) (3.8)
and O= the number of neurons in the output layer, determined by
Y = f R Wk + Yk + ) - (3.9)

3.7.3 TRAINING A NEURAL NETWORK

The researcher employed the backward pass method, as outlined in two separate studies by
Mapuwei et al., (2022) and Mai et al., (2021). This method involves determining the weights and
the number of neurons in each layer of the network. In line with their studies, the researcher began
by initializing the weights of the neurons randomly and setting the biases to zero. Then, the
researcher computed the gradients of the loss function with respect to the weights and biases using
backpropagation. This process was repeated until the model converged and stopped improving.

3.8 Integrated-Artificial Neural Network Hybrid Models

3.8.1 Epidemiological Data Preprocessing

The epidemiological data was cleaned out of any duplicates, outliers and disordered values, and
missing values. Each time series was then scaled independently to N ~ [0,1] by the Min—Max
normalization to align their ranges and stabilize the model building. Finally, the researcher
generated supervised learning samples using a 12 month sliding window which is a 12 by 2 matrix
of normalized incidence and mortality that will predict the next month’s values by feeding the raw
last month’s values into a parallel FFNN branch in the FFNN+LSTM hybrid model, and in both
convolutional and recurrent layers in the CNN+LSTM+FFNN hybrid.

3.8.2 1ANN Architecture
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The research employed two integrated ANN hybrids to capture both short term nonlinearities and
long term dependencies in PF incidence and PF mortality. The FFNN + LSTM parallel architecture
simultaneously feeds the last month’s values into a small feedforward layers and the full 12-month
sequence into an LSTM branch. The outputs are then brought together and passed through
additional dense layers to produce dual forecasts. On the other hand, the CNN + LSTM + FFNN
hybrids first uses a 1dimensional convolutional layer to the 12-month sequence to extract local
temporal patterns and feeds the convolved features into an LSTM layer which models sequential
dependencies and then route both the LSTM output and the final month’s raw values through
FFNN layers before the final multi-output layer. Both designs as shown below on figure 4.4.1
aimed at blending convolutional feature extraction, recurrent memory, and dense prediction in a
unified model for monthly incidence and mortality forecasting.

Figure 3.8.1 Trained IANN Architecture

[ Input Sequence ] 1D CNN
FFNN LSTM
FFNN
LSTM
-
I
EPIDEMIOLOGICAL FORECASTS TE—

3.8.3 NEURAL NETWORKS SELECTION

The researcher evaluated the performance of the neural network models using regression metrics
including MSE and RMSE. These metrics provided a basis for comparing different model
configurations. The model yielding the lowest RMSE on the test set was selected, as it
demonstrated the highest predictive accuracy for malaria trends in Mt Darwin District. The general
formulas for MSE and RMSE are shown below, respectively:
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MSE = — S (Yt = Y)? womemrmemmemememmem e (3.10)

RMSE = \/%z’tvzl(w e 7 (3.11)

3.9 MODEL COMPARISON

The two models, the traditional ARIMA and ARN (FFNN) model were compared using the RMSE
(root mean squared error) and MAE (mean absolute error) as model performance measures. The
researcher also utilized the R? (root-squared) to measure the goodness of fit of the two models.

MAPE = Y|V, — Y ve|n % 100 ~-----mmmmmmmmmmmme oo (3.12)

WhereYt=the actual value, Yt"the forecasted value and n the number of observations

3.10 ETHICAL CONSIDERATIONS

e The researcher abided by the medical data ethics code set by the MoHCC and Medical and
Dental Practitioners Council of Zimbabwe (MDPCZ), personal and private information
such as names and ages of patients were avoided.

e Data was retrieved from the allowed dhis2 domain abiding to the Public Health Act,
Statutory Instrument 154 of 2020.

e Also abiding to the Public Health Act, harmful representations were avoided and some
sensitive values were normalized for reputation purposes where necessary.

e There was no conflict of interest to be reported by the researcher.
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3.11 CHAPTER SUMMARY

This chapter detailed the methods used to build and evaluate forecasting models for the
plasmodium falciparum malaria epidemic in Mt Darwin District. The ARIMA model was
employed as it is usually successful in capturing linear trends and seasonality, while FFNN based
integrated ANN hybrid models were also designed since there are able detect complex nonlinear
patterns, a usually character of epidemics databases. The methodological choice reflects the study's
position that a comparison of classical statistical models with neural network hybrids model offers
a better forecasting framework, especially in health systems where both structured seasonality and
irregular fluctuations are present. The next chapter presents the analysis results and compares
model performance using RMSE, MAE, and R2.
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CHAPTER FOUR

DATA PRESENTATION, ANALYSIS AND DISCUSSION

4.0 Introduction

This chapter focuses on data presentation, analysis, interpretation, and discussion of results. This
was done to answer research objectives and questions. A time series forecasting of the plasmodium
falciparum malaria epidemic was done utilizing integrated artificial neural networks and
meaningful results and discussions were obtained.

4.1 Preliminary Analysis
4.1.1. Frequency on monthly incidence and mortality

Figure 4.1.1. Monthly PF Malaria Incidence Frequency (2013 -2024)

Annual PF Malaria Incidence Frequency (2013-2024)
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The two monthly frequency tables for malaria incidence figure 4.1.1 above and malaria mortality
figure 4.1.2 below suggest a clear seasonal trend. The two variables show peaks between January
and May and a decline from June to December. This pattern suggests that malaria outbreaks in Mt
Darwin are strongly influenced by seasonal climatic factors such as rainfall and temperature which
affect the mosquito breeding cycle.

Figure 4.1.2. Monthly PF Malaria Mortality Frequency (2013 -2024)
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Annual PF Malaria Mortality Frequency (2013-2024)
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Table 4.1.1 Descriptive Statistics
Variable Incidence Meortality
Minimum 35 0
Maximum 69 12
Range 34 12
Sum 7246 707
Lst Quartile 45.75 3
Median 50.50 5
3 Quartile 54 6
Mean 50.32 4.91
Sample Variance 45.07 5.12
Standard Deviation 6.71 2.26
Kurtosis 0.23 -0.10
Skewness 0.23 0.45
Count 144 144

The descriptive statistics for PF malaria between 2013 and 2024 as shown in the figure above show
valuable insights into the epidemiological pattern in District. The incidence data show a consistent
trend, with a mean of 50 cases per month, with a deviation of about 6.71 cases, and positive
skewness 0.23, indicating that while most months recorded case numbers around the mean, there
is a peak season of January to May. The mortality data, reveal a lower mean of 4.91 deaths per
month and a tighter spread of 2.26 deviation suggesting that deadly cases were generally fewer
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and more stable over time. The mortality distribution is slightly skewed right = 0.45 but with
negative kurtosis = -0.10, pointing to a flat distribution. The two variables have ranges of 34 for

incidence and 12 for mortality, and the relatively low kurtosis and skewness in both cases indicate
a likelihood of a normal distribution.

4.2 Pre-tests /Diagnostic tests

Figure 4.2.1 Time series plot of PF Malaria Incidence from 2013 to 2024
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Figure 4.2.2 Time Series plot of PF Malaria Mortality from 2013 to 2024

J

Time Series of PF Mortality (2013-2024)

Rainy Season (Dec-Mar)
\ \ Dry Season (May-Oct)
.\ /

—
=

= Monthly Values
/\ = 12-Month MA

A

—
~

._.
o
g
o
E——
=)

Mortality Count
oo
y
—

‘\
| \va | _
0 i K

%, V) Q Y v )
S \ Y Y \ \ \ W Vv { V v
DA A R A O A A A S A

Year

The two-time series plots for PF Incidence and PF Mortality from 2013 to 2024 as shown above
by figure 4.2.1 and figure 4.2.2 respectively show visible non-stationarity, as both series display
clear seasonal patterns and long-term trends, particularly with repeated peaks during the rainy
seasons which is usually from December to March in Mashonaland Central. The 12-month moving
averages indicate persistent upward and downward shifts over time, suggesting that the data’s
mean and variance change over the years, which violates the assumptions of stationarity. These
visual showings combined with seasonal fluctuations highlighted the need for further statistical
confirmation using tests like the Augmented Dickey-Fuller and autocorrelation (ACF) and partial
autocorrelation function (PACF) test before proceeding with model selection.

4.2.3 ADF Test for Trend Stationarity

Ho: The time series trends are non-stationary

Hq: The time series trends are stationary

Figure 4.2.3 Augmented Dickey-Fuller Test Results Table

-34-|Page




index Incidence Mortality
Test Statistic -0.11195808898040253 -0.886196331653781

p-value 0.948234358966882 (.7924841693576671
#Lags Used 14 1

# Observations Used 129

Critical Value (1%)  -3.482087964046026 -3.4808880719210005
Critical Value (5%)  -2.8842185101614626 -2.8836966192225284
Critical Value (10%) -2.578864381347275 -2.5785857598714417
Stationary No No

The research study concluded that we have failed to reject the null hypothesis that the time series
data trends are indeed non-stationary evinced at 0.05 significance level and the data requires
differencing. ACF and PACF plots were also used to confirm the non-stationary as suggested by
the Augmented Dickey-Fuller hypothesis test.

4.2.4 Autocorrelation function (ACF) and Partial autocorrelation function (PACF)

Figure 4.2.4: Incidence’s ACF and PACF Plot for Raw Data
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The ACF plot for PF incidence shown by figure 4.2.4 above shows a slow, gradual decay, while
the PACF exhibits a few significant spikes followed by a cutoff. This pattern is characteristic of a
non-stationary time series.

Fiqure 4.2.5: Mortality’s ACF and PACF Plot for Raw Data
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Similarly, the ACF of PF mortality shows a persistent autocorrelation with slow decay and several
significant lags, while the PACF reveals a cutoff pattern, again showing non-stationarity. The ADF
test result also supports this, with a p-value greater than 0.05, confirming that both series are non-
stationary. Differencing will be necessary to achieve stationarity for time series modeling

3.8.3 Time Series Differencing

Figure 4.2.6 Differenced Time Series Data

Differenced PF Incidence & Mortality with Seasonal Highlights (2013-2024)

- Differenced PF Incidence
- Differenced PF Mortality

20 1
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T T T T T T T T T T T T T
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
Date

The plot of the differenced time series figures 4.2.6 above shows that the strong trends and
seasonality that were visible before differencing have been removed, especially for mortality
which now fluctuates closely around zero. Incidence still shows some noticeable spikes but with
reduced magnitude and more constant variance over time. These patterns suggest that the data may
now be closer to stationarity and formal confirmation was done through the ADF test shown on
figure 4.2.7 and checking for remaining autocorrelations using the ACF and PACF on figure 4.3.1
and 4.3.2.
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4.2.2: Augmented Dickey-Fuller Test on Differenced Data
Ho: The differenced data time series are non-stationary

H1: The differenced data time series trends are stationary

Figure 4.2.7 Augmented Dickey-Fuller Test on Differenced Data Results Table

index Diffi_Incidence Diffi_Mortality
Test Statistic -6.715482560201263 -§.255596806267191
p-value 3.5910669031383137e-0 4.3468509908057975¢-8
# Lags Used 14 14
# Observations Used 128 128
Critical Value (1%)  -3.4825006939887997 -3.4825006939887997
Critical Value (5%)  -2.884397984161377 -2.884307984161377
Critical Value (10%)  -2.578960197753906 -2.578960197753906

Stationary Yes Yes

We conclude that the ADF test results on the differenced data suggest that both series are now
stationary, evinced at 0.05 (5%) significance level as test statistics are less than the critical values.
This successful transformation into stationarity means we can proceed to ARIMA model building
following the Box-Jenkins sequence. It also sets a strong foundation for developing integrated
artificial neural network models since stationarity helps improve the forecasting performance of
the hybrid neural networks models by stabilizing the variance, mean and autocorrelation structures
of the models.

4.3 The Box-Jenkins Methodology

The Box-Jenkins Methodology sequence was followed in developing the ARIMA models adequate
for the epidemiological data. The sequence includes model identification, parameter estimation
and model checking applied separately to PF incidence and PF mortality after differencing.
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4.3.1 Model Identification

To determine the appropriate orders of the autoregressive (AR) and moving average (MA)
components, we examined the ACF and PACF correlograms of the differenced series for incidence
and mortality shown by figures 4.3.1 and 4.3.2 respectively.

Figure 4.3.1 ACF and PACEF for Differ Incidence

ACF and PACF for Differencing PF Incidence and Mortality
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The PACF showed significant spikes at lags 1 and 2 but cut off thereafter, while the ACF decayed
gradually over several lags suggesting an AR = 2 component and an MA component of order 3.

Figure 4.3.2 ACF and PACEF for Differ Mortality
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The ACF exhibited a noticeable spike at lag 1 before clearing out, and the PACF likewise cut off
at lag 1 suggesting an AR =1 and MA =1 model structure.

This model structures insights were confirmed by an auto-arima search via the pmdarima package
with the result presented in table 4.2.1. The pmdarima package which selected ARIMA (2,1,3) for
incidence and ARIMA (1,1,1) for mortality as the models with the minimum AIC.
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Table 4.3.1 Incidence and Mortality Auto-ARIMA AIC Results.

—

=¥ Best ARIMA for Incidence: (2, 1, 3) with AIC = 1©09.76
Best ARIMA for Mortality: (1, 1, 1) with AIC = 614.94

ARIMA Model AIC Results - Incidence
ARIMA_order AIC

23 (2, 1, 3) 1009.763548

38 (3, 2) 1039.485373

22 (2, 2) 1068.195325

31 (3, 3) 1074.138262

26 (3, 2) 1e77.e43944

19 (2, 3) 1081.295256

18 (2, 2) 1087.840594

27 (3, 3) 1@891.831634

29 (3, 1) 1114.372536

25 (3, @, 1) 1124.274462

ARIMA Model AIC Results - Mortality
ARIMA_order AIC

13 (1, 1) 614.940646

6 (e, 2) 615.751046

31 (3, 3) 616.220203

21 (2, 1) 616.893430

14 (1, 2) 616.898812

7 (o, 3) 617.019933

22 (2, 2) 618.383121

29 (3, 1) 618.809376

15 618.889019

30 626.8810206

- - -

-

-

-

I—‘thmml—"l—‘l—‘

-

4.3.2 Parameter Estimation

Having fixed the model orders, we estimated the AR and MA coefficients, along with the constant
drift term where they were applicable using maximum likelihood. The resulting parameter
estimates are summarized in Table 4.3.2 for incidence and Table 4.3.3 for mortality.

Table 4.3.2 Parameter Estimation for PF Incidence Model
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ar.L1 1.7314 9.001 1976.564 0.000 1.730 1.733
ar.L2 -9.9999 ©.000 -5405.447 ©.000 -1.000 -1.000
ma.L1l -2.5620 0.076 -33.616 ©.000 -2.711 -2.413
ma.L2 2.4141 0.143 16.903 ©.000 2.134 2.694
ma.L3 -0.8093 6.0676 -109.631 ©.000 -9.959 -0.660
sigma2 107.1319 13.039 8.216 0.000 81.576 132.688

Table 4.3.3 Parameter Estimation for PF Mortality Model

coef std err z P>|z] [8.025 ©.975]

ar.L1 ©.3152 ©.095 3.316 0.001 ©.129 0.501

ma.L1l -9.9183 0.049 -18.620 0.000 -1.015 -9.822

sigma2 5.9149 0.704 8.405 0.000 4.536 7.294

All retained coefficients were highly significant (p < 0.05), confirming their contribution to
capturing the autocorrelation structure of the differenced series.

4.3.3 Model Diagnostic Checking

To validate the adequacy of each fitted ARIMA model, we performed a series of residual
diagnostics:

4.4.1 Residual Time Series Plot

Figure 4.4.1 Residual Time Series Plot
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Figure 4.4.1 shows that plotted residuals over time have no remaining trend or obvious seasonality
remains. The residual series appeared to fluctuate randomly around zero despite the spikes that
within the range of -3 to 2 for both series.

4.3.4 Test of Independence

We examined the residual ACF correlogram as shown on figure 4.4.2 below. No autocorrelation
spikes exceeded the 95% confidence bounds expect the one at first lag, indicating the residuals are
effectively white noise.

Fiqure 4.4.2 ACF Correlogram Plot
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4.3.4 Test for Normality
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Histograms of residuals on figure 4.4.2 and a Q—Q plot on figure 4.4.3 both suggested approximate
normality.

Figure 4.4.2 Incidence on the right and mortality on left

Histogram plus estimated density Histogram plus estimated density

Figure 4.4.3 Q-0 Residual plot for incidence and mortality
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The histograms displayed a bell shaped distribution and the Q-Q plots on figure 4.4.3 above
showed that most of the residuals lie closer to the line. The suggested residuals are approximately
normally distributed. Formal test for normality such as the Kolmogorov Smirnov test, Anderson
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Darling, and Ryan Joiner tests returned p-values above 0.05, failing to reject normality as shown
on table 4.4.4 below.

Table 4.4.4 Normality Test Results

Test Statistic P-value
Kolmogorov Smirnov At 0.05 0.225
Anderson Darling At 0.05 2.295
Ryan Joiner At 0.05 0.875

These diagnostics confirmed that the ARIMA (2,1,3) and ARIMA (1,1,1) models adequately
capture the dynamics of PF incidence and mortality respectively, with residuals that are stationary,
uncorrelated, and normally distributed thereby meeting the key Box Jenkins conditions for
effective forecasting models.

4.35 ARIMA Models Validations

Firstly, the researcher partitioned the data into a training set and a testing set, the training set
covered from January 2013 through to December 2023 and the rest was a test set comprising
January to December 2023. A one step ahead forecast for each month of 2024 was done using the
finalized models, ARIMA (2.1.3) for PF incidence and ARIMA (1.1.1) for PF mortality and
compared them against actual observed values (Table4.3.1).
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Table 4.3.1 Testing Set 2024 District’s PF Malaria Epidemiological Data (Actual Values Vs
ARIMA Forecasted)

2024 PF Incidence Testing Set PF Mortality Testing Set

Month Actual ARIMA (2.1.3) Actual ARIMA(1.1.1)

January 264 264 0 8

February | 393 387 4 7

March 797 780 6 7

April 612 600 6 7

May 216 224 5 6

June 141 150 4 5

July 921 895 3 2

August 605 615 2 1

September | 345 340 5 0

October 429 418 2 0

November | 697 685 0 0

December | 539 530 2 0

Results MAE 8.67522 MAE 1.78303
RMSE 125.430663 RMSE 4.65113
R? 0.826141 R? -0.156753

The ARIMA (2.1.3) model achieved an MAE of 8.68 and RMSE of 125.43 cases on the 2024 test
set with a strong R? of 0. 826. This indicates that the model can explain over 80% of the variations
in PF incidence and suggests it can provide reliable forecasts for malaria case counts in the district.
However, unlike the ARIMA (2.1.3) the ARIMA (1.1.1) model for mortality underperformed with
a negative R? of -0.157 which implied that the model totally failed to model death count and it
couldn’t provide reliable forecasts although it was the best model according to AIC values.

4.4 Integrated-Artificial Neural Network Hybrid Models

The integrated ANN hybrid models demonstrated superior capacity in modeling both short-term
fluctuations and long term temporal dependencies in plasmodium falciparum incidence and
mortality. By simultaneously feeding both series of the historical data through distinct
interconnected layers, the FFNN + LSTM hybrid effectively captured sharp and recent changes
using feedforward layers, while the LSTM path modeled sequential dependencies and seasonal
trends over the 12-month window. This parallel structure proved particularly effective in balancing
immediate outbreak spikes with underlying temporal trends and patterns.
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The addition of a 1D Convolutional layer in the CNN + LSTM + FFNN hybrid further improved
model performance by extracting local temporal recurring three month dips before passing them
to the LSTM layer for memory holding. This layered relationship allowed the model to detect and
connect localized and cumulative epidemiological signals, which were then refined through
feedforward layers into actionable forecasts. The benefit of this architecture was its ability to fuse
pattern recognition, memory, and prediction into an interconnected learning process. The trained
model architecture is presented in Figure 4.4.1

4.4.1 Trained IANN Architecture
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4.4.2 Optimal Trained Computational Dense Layers Results

Layer (type) Output Shape Param # Connected to
input_layer ( , 12, 2) e -

(InputLayer)

convld (ConvlD) ( , 8, 64) 704 input_layer[8][®o]
max_poolingld ( , 4, 64) e convid[e][e]
(MaxPoolinglD)

input_layer_1 ( , 2) e -

(InputLayer)

lstm (LSTM) ( , 64) 33,024 max_poolingld[@]..
dense_1 (Dense) ( s 32) 96 input_layer_1[@]..
dense (Dense) ( , 32) 2,880 1stm[@][@]
dense_2 (Dense) ( , 16) 528 dense_1[8][e]
concatenate ( , 48) e dense[©][@],
(Concatenate) dense_2[@][@]
dense_3 (Dense) ( y 32) 1,568 concatenate[8][@]
dense_4 (Dense) ( , 16) 528 dense_3[8][e]
dense_5 (Dense) ( , 2) 34 dense_4[8][e]

Total params: 38,562 (150.63 KB)
Trainable params: 38,562 (158.63 KB)

The CNN+LSTM+FFNN hybrid could both capture short-term variability and long-term
seasonality. Such high performance is the best proof of the intelligent design of the model, which
replicates the information processing capability of the human brain. The 64-filter convolutional
layer (Conv1D) allowed the model to detect small, repetitive patterns in the 12-window sequence
matrix. These features were input to a pooling layer and to the LSTM layer, used to learn from
past trends and seasonal outbursts. At the same time, another input layer handled current
information such as instant conditions. Outputs from the two branches were combined and input
to fully connected layers to generate the output prediction. The entire model had 38,562 trainable
parameters, which was complicated enough to be learned from the data but not too large to overfit.

3.8.4 Model Training and Testing
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The integrated artificial neural network (IANN) models were trained using normalized PF
incidence and PF mortality data from 2013 to 2023, with 2024 set out for testing. Supervised
learning samples were generated using a sliding 12-month input window to predict the next
month’s incidence and mortality values. After training, forecasts for the 12 months of 2024 were
generated and compared against the actual observed values. The forecasting results were
summarized in a table showing the models' ability to track real epidemiological trends across the
test period.

Table 4.3.2 Neural Models Validation

MONTH Actual Tncidence | LSTM+FFNN Incidence | CNN+LSTM+FNN Incidence | Actual Mortality | FENN+LSTM Mortality | CNN+LSTM+FNN Mortality
January 264 260 262 0 l 0
February 393 388 391 4 4 3
March 797 790 794 6 6 5
April 612 603 608 6 5 5
May 216 11 218 5 4 4
June 141 138 140 4 3 3
July 9] 915 918 3 3 2
August 605 610 606 2 2 2
September 345 340 343 5 5 4
October 429 425 421 2 l l
November 697 692 695 0 ! 0
December 539 333 537 2 1 1
MAE 425 2 6.71 i3
RMSE 440 216 11693 96.85
' 0.8138 09132 0.9132 0.9396

The performance of each model was evaluated using three statistical metrics which are the mean
absolute error, root mean squared error, and the coefficient of determination. On the 2024 test set,
the FFNN+LSTM hybrid model produced an MAE of 6.71, an RMSE of 116.93, and an R? value
of 0.91, suggesting strong alignment between predicted and actual values. The
CNN+LSTM+FFNN model achieved slightly better results, with an MAE of 5.43, an RMSE of
96.85, and an R2 of 0.94. These results indicate that incorporating both convolutional and recurrent
layers contributed to improved forecasting performance when compared to the simpler
FFNN+LSTM model.

3.9 Models Comparison
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The effectiveness of both traditional time series and computational intelligence approaches, the
ARIMA, FFNN+LSTM hybrid, and CNN+LSTM+FFNN hybrid models was evaluated by key
performance metrics such as the mean absolute error (MAE), root squared error (RMSE), and R?
score. While ARIMA showed good forecasting capability in PF incidence although it was very
weak in modeling PF mortality, the FFNN+LSTM hybrid showed improvements with the ability
to model both, and the CNN+LSTM+FFNN model consistently outperformed both, as it achieved
the lowest errors and highest variance explanation. These results showed the significant advantage
of deep learning-based hybrids in modeling complex, nonlinear plasmodium falciparum
epidemiological trends.

These results are similar to the findings of Wang and LI (2020) and consistent with those of work
by Zhang et al., (2021) who both independently noted that integrating convolutional to extract
local patterns with LSTM memory and FFNN predictions layers yields better models compared to
ARIMA and in some case single architecture ANN.

3.10 Best Model Selection

Based on the model validation results, the CNN+LSTM+FFNN hybrid was selected as the best
performing model, having delivered the best accuracy and strength across all evaluation metrics.
Therefore, this integrated artificial neural network hybrid model was employed to generate
monthly forecasts of PF malaria incidence and mortality from January 2025 to December 2030
due to its ability to forecast future trends of plasmodium falciparum malaria with such a high
degree of confidence rather than traditional time series models.

4.7 2025 to 2030 Forecasting

TABLE 4.7.1: 1D CNN+LSTM+FFNN Forecasted Monthly Plasmodium Malaria Incidence and
Mortality 2025 — 2030

-48-|Page




FABLE 4.7.1: CNN+LSTM-FFNN Forecasted Monthly Plasmodium falciparum

Expected Incidence Expected Mortality 7
Monc 2025 = 2026 | 2027 | 2027 2025 = 2026 | 2027 = 2028 | 2030 |
January 149 | 150 | 165 | 146 | 367 | 364 | 332 | 332 | 279
February 176 | 165 | 157 | 152 | 475 | 419 | 448 | 330 | 293
March 188 | 176 | 165 162 | 536 | 536 | 456 | 399 | 305
April 188 | 171 | 165 159 | 556 | 556 @ 498 | 302 | 3,08
May 180 | 171 | 165 | 145 | 498 | 432 | 448 | 3,77 3,02
June 149 | 149 | 146 | 140 | 346 | 3.46 | 295 | 2,73 2,88
July 149 | 146 | 144 | 140 | 346 | 395 | 295 | 273 273
August 131 | 132 | 136 | 133 | 2,95 | 295 | 209 | 2,60 273
September M9 | 131 | 128 | 133 | 264 | 295 | 250 | 250 2,51
October me | 121 | 120 | 133 | 252 | 252 | 250 | 248 2,48
November 21 | 122 | 127 133 252 252 | 249 | 248 252
December 132 | 133 | 135 | 133 | 330 | 3,06 | 250 | 2,52 2,59
Average 1508 | 1497 | 1437 | 1437 | 393 | 393 39 | 296 29

4.8Discussion of Findings

The forecasts by the CNN+LSTM+FFNN hybrid model show that there is a seasonal cycle on the
plasmodium falciparum incidence with peaks every year between February and April which
mirrors the rainy-season spikes trends documented by Kumar et al., (2014). For this research, it
means the hybrid model had successfully learned the district annual transmission trend. The area
chart on figure 4.8.3 further supports that, even incidence levels decline over time from the
forecasted 1824 cases in 2025 to 1703 by 2030 with seasonal peaks remaining marked each year.

Figure 4.8.1 CNN+LSTM+FFNN Time Series Plot of Forecasted Monthly Plasmodium Malaria
Incidence
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Forecasted Monthly PF Incidence (2025-2030)
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Figure 4.8.2 CNN+LSTM+FFNN Time Series Plot of Forecasted Monthly Plasmodium Malaria
Mortality
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On the other hand, mortality forecasts show a flatter trend on monthly deaths with a minimum of
2 and a maximum of 6 and a gradual downward drop from the annual total of 46 deaths expected
in 2025 to 33 in 2030. This decline aligns with the research work of Alhassan et al., (2017) on
improving case management in northern Ghana which further suggested that, even if malaria case
numbers are seasonally volatile there is need for enhanced treatment and prevention efforts to
reduce the risk.

Figure 4.8.3 Area Chart of Forecasted PF Incidence and Mortality (2025-230)
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Area Chart: Forecasted PF Incidence and Mortality (2025-2030)
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4.8.1 Statistical and Predictive Insights to MoHCC, DHA and DHO
Figure 4.8.4 Horizontal bar chart of Forecasted PF Incidence and Mortality (2025-230)
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The horizontal bar chart shown by figure 4.8.4 illustrates that, even by 2030 the Mt Darwin district
is expected to face over 1700 malaria cases annually underlining the need for sustainable control
measures to be done by MoHCC and DHA while mortality is expected to fall below 40 deaths per
year. The MoHCC and DHA should consider action for timely distribution of mosquito nets,
having a reliable adequate medicine supply chain of antimalarial drugs from NatPharm, and
malaria health campaigns each pre-rainy season.
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Figure 4.8.5 Forecasted Plasmodium Falciparum Heat-map Charts (2025-2030)
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The time series heatmaps of the forecasted Plasmodium falciparum incidence and mortality shown
by the figure above offer a visual summary of seasonal malaria patterns from 2025 to 2030. These
heatmaps highlight months of consistently high transmission, especially from February to April of
2025,2026 and 2027. This will allow health authorities to forestall pressure points in the healthcare
system. For decision like DHA, MoHCC, and NatPharm, this visualization shows complex
forecasts into actionable windows for intervention whether it's scaling up diagnostic efforts,
allocating frontline health workers, and distribution of medicines and preventive supplies.
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4.9Chapter Summary

This chapter outlined data presentation, analysis, and discussion of results of the forecast on
plasmodium falciparum malaria in the district of Mt Darwin. The best performing model which
was found to be the CNN+LSTM+FFNN hybrid model was utilized. Visualizations which were
done in this chapter provides health predictive insights to the DHA, MoHCC and the National
pharmaceuticals company (Natpharm). The following chapter will be on the research
recommendations and conclusion.
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CHAPTER FIVE

FINDINGS, CONCLUSIONS AND RECOMMENDATIONS

5.0 Introduction

This chapter provides a comprehensive summary of the research study focused on time series
forecasting of Plasmodium falciparum malaria epidemics in Mt. Darwin District. The study
utilized an integrated artificial neural network hybrid modeling approach to come up with accurate
epidemic predictions. In addition to highlighting the key findings, the chapter presents practical
recommendations for the district health authorities, the Ministry of Health and Child Care
(MoHCC), and other interested stakeholders. It also outlines directions for future research, all
aimed at enhancing malaria surveillance, preparedness, and response strategies.

5.1 Summary of Study

This research study focused on forecasting Plasmodium falciparum malaria epidemics in Mt.
Darwin District using an integrated artificial neural network (IANN) hybrid modeling approach.
The study compared the effectiveness of traditional time series forecasting techniques with
modern, data driven computational intelligence models in predicting both malaria incidence and
mortality. While traditional models such as ARIMA were initially applied specifically ARIMA
(2,1,3) for incidence and ARIMA (1,1,1) for mortality they demonstrated clear limitations.
Although ARIMA models were able to reflect general trends and seasonal peaks commonly
observed during the rainy season, typically from December to April, they struggled to capture
sudden fluctuations in case numbers and consistently underperformed in forecasting months with
low mortality. These shortcomings were evident in their relatively poor performance evaluation
results compared to those of the neural network based hybrid models.

In contrast, the introduction of the IANN hybrid framework offered a stronger and adaptive
approach. By integrating convolutional layers to detect local outbreak signals, recurrent layers to
account for time dependent behavior, and fully connected layers for decision mapping, the hybrid
model significantly improved forecast accuracy to nearly 94%. This was especially important for
anticipating sharp increases in cases during peak transmission periods and for identifying gradual
declines in mortality over the years. The enhanced performance of the IANN hybrid not only
addressed the weaknesses of traditional models but also provided more reliable forecasts that can
support proactive health planning and early intervention of PF malaria in Mt Darwin district.
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The time series forecast of Plasmodium falciparum malaria incidence and mortality extended from
January 2025 through December 2030, using the CNN+LSTM+FFNN hybrid model identified as
the most effective among all models tested in this study. This advanced model outperformed
traditional techniques by successfully capturing both short-term fluctuations and long-term
patterns in PF malaria epidemic trends and patterns. Meaningful visualizations in chapter 4 played
a crucial role in transforming the model’s numerical outputs into clear and actionable insights. The
heatmap plot, a color graded, month by month grid spanning the forecast horizon enabled a visual
risk assessment of the forecasted situation, highlighting high risk periods in a way that allowed the
district healthy to easily identify when and where interventions would be most needed.

The forecast exposed that while both PF malaria incidence and mortality are projected to decline
gradually over the next 6 coming years a positive indication of progress in malaria control, the
regular seasonal surges, particularly during the rainy months, are expected to continue. These
findings underscore the need for sustained vigilance and timely interventions despite the overall
downward trend. Ultimately, the shift from traditional ARIMA models to a refined data driven
computational intelligence hybrid approach proved crucial in capturing the complicated dynamics
of malaria epidemic in Zimbabwe’s rural settings.

5.2 Conclusions

This research study concludes that integrated artificial neural network modeling offers a superior
approach to time series forecasting of PF malaria epidemic trends and pattern in Mt Darwin
District. It also acts a baseline for future research in rural communities especially where health
systems face resource limitations and need to act on early warnings. This approach also aligns with
the national and global goals on malaria elimination, reinforcing the need to integrate advanced
computational intelligence methods and data-driven discussions into routine malaria epidemic
surveillance and planning.

5.4 Recommendations

In light of the study’s findings, it is recommended that the district health authorities, the Ministry
of Health and Child Care, and other relevant stakeholders should pay special attention to the
December to April rainy season, when malaria transmission peaks, ensuring adequate preparation
through in advance medical supplies in strategic collaboration with NatPharm, enhanced vector
control, and intensified public health campaigns. Moreover, investment in local data infrastructure
including training of health personnel in digital health informatics systems will be vital to
sustaining forecasting and future research studies. By embracing these recommendations, the
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district and national health systems can significantly strengthen their preparedness and response
capacity, contributing meaningfully to WHO and Zimbabwe’s broader malaria elimination goals.

5.5 Areas for Further Research

Future research studies should expand this modeling framework to other districts and provinces
and include additional environmental and socio economic variables to improve the power of the
model. Moreover, comparative research involving other machine learning architectures such as
random forest could further enhance overall modeling and forecasting capabilities.
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ARIMA Python Code

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import warnings

import statsmodels.api as sm

from statsmodels.tsa.arima.model import ARIMA
from itertools import product
warnings.filterwarnings ("ignore")

df = pd.read csv("/content/drive/MyDrive/malaria data.csv", parse dates=['Date'])
df.set index('Date', inplace=True)

train df = df.loc(['2013-01-01"':"'2023-12-31"]

incidence = train df['Pf Incidence']
mortality = train df['Pf Mortality']
#

def arima grid search(series, label='Series', p range=range(0, 4), d range=range (0, 2),
g_range=range (0, 4)):
results = []
for order in product(p_range, d _range, g_range):
try:
model = ARIMA (series, order=order) .fit ()
results.append((order, model.aic))

except:
continue
results_df = pd.DataFrame (results, columns=["ARIMA order", "AIC"]).sort values (by='AIC')

best model = results df.iloc[0]

print(f"\ncl Best ARIMA for {label}: {best model['ARIMA order']} with AIC =
{best_model['AIC']:.2f}")
return results df, best model

inc_results, inc _best = arima grid search(incidence, label="Incidence")
mort results, mort best = arima grid search(mortality, label="Mortality")

#

print("\nnﬂ ARIMA Model AIC Results - Incidence")
print (inc_results.head(10))

print ("\nffll ARTMA Model AIC Results - Mortality")
print (mort results.head(10))

#
final inc model = ARIMA (incidence, order=inc best['ARIMA order']).fit()
final mort model = ARIMA (mortality, order=mort best['ARIMA order']).fit()

# Optional: Plot residuals

final inc model.plot diagnostics(figsize=(10, 6))
plt.suptitle("Diagnostics - Best Incidence ARIMA")
plt.show ()

final mort model.plot diagnostics(figsize=(10, 6))

plt.suptitle("Diagnostics - Best Mortality ARIMA")
plt.show ()
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# ARIMA Model Evaluation and Forecasting for Malaria Incidence and
Mortality

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.metrics import mean absolute error, mean squared error,
r2 score

import warnings

from statsmodels.tsa.arima.model import ARIMA

warnings.filterwarnings ("ignore")

df = pd.read csv("/content/drive/MyDrive/malaria data.csv",
parse dates=['Date'])

df.set index('Date', inplace=True)

df = df.sort index()

# Split into training (2013-2023) and test (2024)
train = df.loc['2013-01-01":'2023-12-31"]
test = df.loc['2024-01-01"':'2024-12-31"]

model inc = ARIMA(train['Pf Incidence'], order=(2,1,3)).£fit()
model mort= ARIMA(train['Pf Mortality'], order=(1,1,1)).£fit()

dates 2024 = test.index

fore inc 2024 = model inc.forecast (steps=12)
fore inc_2024.index = dates 2024

fore mort 2024 = model mort.forecast (steps=12)
fore mort 2024.index = dates 2024

df 2024 = test.copy()

df 2024['Inc Forecast'] = fore_inc_2024
df 2024['Mort Forecast'] = fore mort 2024
metrics = {
'Metric': ['MAE','RMSE','R2'],
'Incidence': [

mean absolute error(df 2024['Pf Incidence'],
df 2024['Inc Forecast']l),
mean squared error (df 2024['Pf Incidence'],
df 2024['Inc Forecast']l), #,squared=False),
r2 score(df 2024['Pf Incidence'], df 2024['Inc Forecast'])
1,
'Mortality': [
mean absolute error (df 2024['Pf Mortality'l],
df 2024['Mort Forecast']),
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mean squared error (df 2024['Pf Mortality'],
df 2024['Mort Forecast']),),
r2 score(df 2024['Pf Mortality'], df 2024['Mort Forecast'])

}

metrics df = pd.DataFrame (metrics)

print ("\nARIMA 2024 Performance Metrics:")
print (metrics df)

# Plot Actual vs Forecast (Monthly)

plt.figure(figsize=(12,6))

plt.plot(df 2024.index, df 2024['Pf Incidence'], label='Actual Incidence')
plt.plot(df 2024.index, df 2024['Inc Forecast'], label='Forecast
Incidence')

plt.plot(df 2024.index, df 2024['Pf Mortality'], label='Actual Mortality')
plt.plot(df 2024.index, df 2024['Mort Forecast'], label='Forecast
Mortality'")

plt.title ('ARIMA Model: Actual vs Forecast (2024)")

plt.xlabel ("Month"')

plt.ylabel ('Count')

plt.legend ()

plt.grid(True)

plt.tight layout ()

plt.show ()

fore mort 2024.index = dates 2024

IANN Python

# CNN + LSTM + FFNN Hybrid Model for Malaria Incidence and Mortality
Forecasting

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics import mean squared error, mean absolute error,
r2 score

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Input, Dense, LSTM, ConvlD,
MaxPoolinglD, Flatten, Concatenate

from tensorflow.keras.callbacks import EarlyStopping

import datetime

df = pd.read csv("/content/drive/MyDrive/malaria data.csv",
parse dates=['Date'])

df.set index('Date', inplace=True)

df = df.sort index()
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df = df.loc['2013-01"':'2024-12"]

# Normalize features
scaler = MinMaxScaler ()
df scaled = pd.DataFrame (scaler.fit transform(df), columns=df.columns,
index=df.index)
def create dual inputs(data, seq length):
X _seq, X _ffnn, vy = [1, [1, []
for 1 in range(len(data) - seq length):
X seqg.append(datali:i+seq length])
X ffnn.append(data[i+seqg length - 1])
y.append (data[i+seg length])
return np.array(X seq), np.array(X ffnn), np.array(y)

sequence length = 12
X seq, X ffnn, y = create dual inputs(df scaled.values, sequence length)

train end loc = df scaled.index.get loc('2023-12")

if isinstance(train end loc, slice):
train end = train end loc.stop -1
else:
train end = train end loc

train end index =

df scaled.index.get indexer ([df scaled.index[train end]]) [0]

X seq train, X seq test = X seqg[:train end index - sequence length + 1],
X seg[train end index - sequence length + 1:]

X ffnn train, X ffnn test = X ffnn[:train end index - sequence length +
1], X ffnn[train end index - sequence length + 1:]

y train, y test = y[:train end index - sequence length + 1],
yltrain end index - sequence length + 1:]

# CNN + LSTM branch

input seq = Input (shape=(sequence length, 2))

x = ConvlD(filters=64, kernel size=5, activation='relu') (input seq)
x = MaxPoolinglD(pool size=2) (x)

x = LSTM(64, return sequences=False) (x)

x = Dense (32, activation='relu') (x)

# FFNN branch

input ffnn = Input (shape=(2,))

y_ff = Dense (32, activation='relu') (input ffnn)
y _ff = Dense(l6, activation='relu') (y ff)
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# Merge

merged = Concatenate() ([x, y ff])

z = Dense (32, activation='relu') (merged)
z = Dense(l6, activation='relu') (z)
output = Dense(2) (z)

model = Model (inputs=[input seq, input ffnn], outputs=output)
model.compile (optimizer="adam', loss='mse')
model . summary ()

ff coosoooososoooooes Model Training ------—------——-——- #

early stop = EarlyStopping(monitor='val loss', patience=10,
restore best weights=True)

model.fit ([X seqg train, X ffnn train], y train, epochs=500, batch size=16,
validation split=0.2, callbacks=[early stop], verbose=l)

ff cemmmcccceeeeemme= Model Testing —--—--———-—-———————————- #

y _pred = model.predict ([X seq test, X ffnn test])

y_pred inverse =

scaler.inverse transform(np.hstack((np.zeros((len(y pred), df.shape[l] -
2)), y pred)))[:, -2:]

y _test inverse =

scaler.inverse transform(np.hstack((np.zeros((len(y test), df.shape[l] -
2)), y_test)))[:, -2:]

mae = mean absolute error(y test inverse, y pred inverse)

rmse = mean squared error(y test inverse, y pred inverse) #,

r2 = r2 score(y test inverse, y pred inverse)

"\nModel Evaluation (2024):")
f"MAE: {mae:.2f}")

f"RMSE: {rmse:.2f}")

print (f"R"2 Score: {r2:.2f}1")

dates 2024 = df.index[-12:]
plt.figure (figsize=(12, 6))

print
print
print

—_ o~ o~ o~

plt.plot(dates 2024, y test inverse
plt.plot(dates 2024, y pred inverse
plt.plot (dates 2024, y test inverse
plt.plot (dates 2024, y pred inverse
plt.legend ()

plt.title("Actual vs Predicted Malaria Incidence and Mortality (2024)")
plt.xlabel ("Month")

plt.ylabel ("Count")

plt.grid(True)

plt.tight layout()

plt.show ()

label='"Actual Incidence"')
label='Predicted Incidence')
label="Actual Mortality")
label='Predicted Mortality')
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#o—mmmm Forecasting: 2025-2030 -----------—--——-—- #
def forecast future(model, history, steps):

forecast = []

current seq = history.copy()

for in range(steps):
ffnn input = current seq[-1]
pred = model.predict ([current seq[np.newaxis, :, :],
ffnn input[np.newaxis, :]]) [0]

forecast.append (pred)
current seq = np.vstack([current seq[l:], pred])
return np.array(forecast)

last seq = df scaled.values[-12:]

future preds = forecast future (model, last seq, 72)

future padded = np.hstack((np.zeros((future preds.shape[0], df.shape[l] -
2)), future preds))

future unscaled = scaler.inverse transform(future padded) [:, -2:]

future dates = pd.date range(start='2025-01-01"', periods=72, freq='MS')
future df = pd.DataFrame (future unscaled,

columns=['Pf Incidence Forecast', 'Pf Mortality Forecast'],
index=future dates)

future df.plot(figsize=(12, 6), title='Forecasted Monthly Malaria
Incidence and Mortality (2025-2030)', grid=True)

plt.ylabel ("Count")

plt.tight layout ()

plt.show ()

yearly summary = future df.resample('Y') .sum()
print ("\nYearly Forecast Summary (2025-2030):")
print (yearly summary)

yearly summary.plot (kind='bar', figsize=(10, 5), title='Yearly Forecasted
Incidence and Mortality', rot=45, grid=True)

plt.ylabel ("Total Count")

plt.tight layout ()

plt.show ()

DATA SOURCE LINK

https://apps.mohcc.gov.zw/impilo-dhis/dhis-web-commons/security/login.action
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