
BINDURA UNIVERSITY OF SCIENCE EDUCATION 

 

 

FACULTY OF SCIENCE AND ENGINEERING 

                             DEPARTMENT OF STATISTICS AND MATHEMATICS 

TIME SERIES FORECASTING OF PLASMODIUM FALCIPARUM MALARIA EPIDEMIC: 

A COMPARATIVE ANALYSIS OF ARIMA AND INTEGRATED ARTIFICIAL NEURAL 

NETWORKS - A CASE STUDY OF THE MINISTRY OF HEALTH AND CHILD-CARE, MT 

DARWIN DISTRICT. 

                                                                 

                                                                         BY 

                                                 NYASHA DZAPASI (B213204B) 

 

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR BSc.HONOURS IN STATISTICS AND FINANCIAL MATHEMATICS  

                                                                

                                                  SUPERVISOR: Mr. BASIRA  

                                                              JUNE 2025 



i | P a g e  
 

Authorship Declaration Statement 

 

Title of the Thesis:  Time Series Forecasting of Plasmodium Falciparum Malaria Epidemic: A 

Comparative Analysis of ARIMA and Integrated Artificial Neural Network - A Case Study of 

the Ministry of Health and Child-Care, Mt Darwin District. 

 

Author:      Nyasha Dzapasi 

Program:   Honors Bachelor of Science Degree in Statistics and Financial Mathematics  

 

I, the undersigned author of the above-mentioned thesis, hereby declare that: 

1. This thesis is my original work and has been prepared by me in accordance with 

the institution's requirements. 

2. All sources, data, and references used in this thesis have been acknowledged and 

cited appropriately. 

3. This thesis has not been submitted elsewhere for any degree or diploma. 

4. I have obtained all necessary permissions for the inclusion of third-party content 

where applicable. 

I affirm that this declaration is made with full integrity and in compliance with the institution's 

policies and academic practice. 

Author's Signature: 

 

 

Date: 14/06/2025 



ii | P a g e  
 

APPROVAL FORM 

 

 

 

 

 

 



iii | P a g e  
 

DEDICATION 

 

This research project is respectfully dedicated to the memory of my beloved aunt, Ms. Sarah 

Mawonga, who tragically lost her life to malaria in 2010, and to the 338 lives lost during the 

devastating malaria epidemic that struck Zimbabwe between February and March of 2017. Their 

untimely deaths serve as a solemn reminder of the continued burden malaria imposes on families 

and communities across the nation. It is my hope that this study contributes meaningfully to the 

ongoing fight against malaria and supports and protect future generations from the pain and loss 

we have endured. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv | P a g e  
 

ACKNOWLEDGEMENTS 

 

I extend my heartfelt gratitude to the professionals and experts in the field who generously shared 

their knowledge and expertise throughout the development of this dissertation. I am deeply grateful 

to my supervisor, Mr. K. Basira, for his invaluable guidance, unwavering support, and insightful 

feedback, which have been instrumental in refining my research. I also wish to express my sincere 

appreciation to Madam P. Hlupo, her coordination and continuous encouragement have made a 

significant impact on this journey. The Department of Statistics and Mathematics at Bindura 

University of Science Education has provided essential research facilities and the Mt Darwin 

District Hospital’s administrative support, for which I am truly thankful. Furthermore, I am 

grateful to God for granting me strength, wisdom, and the opportunity to pursue my education at 

this level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v | P a g e  
 

ABSTRACT 
 

Malaria caused mainly by Plasmodium falciparum is still a significant public health problem in 

rural areas of Zimbabwe. This study develops and contrasts time series forecasting models to 

predict monthly malaria incidence and mortality in Mt Darwin District, using historical data from 

January 2013 to December 2023. Two model approaches were employed, a standard 

Autoregressive Integrated Moving Average (ARIMA) model and an integrated computational 

intelligence strategy incorporating Convolutional Neural Networks (CNN), Long Short-Term 

Memory (LSTM), and Feedforward Neural Networks (FFNN). ARIMA model selection was 

consistent with the Box-Jenkins method, while the hybrid neural network was trained with a 12-

month sliding input window. Model performance was assessed with a held-out 2024 test set with 

Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and the coefficient of 

determination (R²). Optimal ARIMA specifications (2,1,3) for incidence and (1,1,1) for mortality 

achieved moderate accuracy (R² = 0.83 for incidence), but unacceptability for mortality (R² = –

0.16). The CNN+LSTM+FFNN hybrid model performed the best among all models with an MAE 

of 5.43, RMSE of 96.85, and R² = 0.94 for mortality, and an MAE of 2, RMSE of 2.16, and R² = 

0.91 for incidence. 2025-2030 projections of malaria case declines from 1,824 in 2025 to 1,703 in 

2030 and of deaths from 46 to 33 over the same period, with seasonal highs in February to April. 

These findings illustrate the strength of hybrid neural networks in modeling nonlinear, intricate 

patterns of disease in under researched environments. The study recommends that Mt Darwin 

District Health officials and the Ministry of Health and Child Care coordinate antimalarial 

procurement with NatPharm, augment bed-net and diagnostic kit distribution in high months, 

intensify targeted indoor spraying by community health workers, and improve reporting through 

DHIS2/Impilo systems. 
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Chapter 1 

1.0 INTRODUCTION  
 

Malaria continues to pose significant health and economic challenges in many parts of the world, 

with Plasmodium falciparum accounting for the majority of severe cases in sub-Saharan Africa 

(World Health Organization, 2023). In Zimbabwe's Mt Darwin District, public health officials are 

tasked with not only responding to active outbreaks but also anticipating future transmission 

patterns to strengthen the efficiency of resource deployment and targeted interventions. As noted 

in recent studies, developing accurate models for forecasting malaria incidence and mortality is 

increasingly vital for shaping timely and effective public health strategies (Chikoko et al., 2021). 

This research seeks to build a forecasting model tailored to predict both malaria incidence and 

mortality associated with Plasmodium falciparum in Mt Darwin District. By applying statistical 

and computational intelligence methods to historical health data, the study aims to generate 

evidence based future forecasts that can support decision making by the District Medical Officer 

(DMO), District Health Authorities (DHA), and the Ministry of Health and Child Care (MoHCC). 

These projections are intended to improve planning and prioritization of malaria control strategies, 

particularly in resource constrained rural settings. (Alhassan et al., 2017). 

 

1.1 BACKGROUND OF THE STUDY  
 

Malaria continues to be a major global health problem, putting about 3.3 billion people in 97 

countries, including Zimbabwe, at risk. Each year, it causes around 200 million infections and 

about 600,000 deaths (World Health Organization, 2015). In Zimbabwe, Plasmodium falciparum 

is the most common cause of malaria, making it a serious public health issue. Studies show that 

malaria cases are affected by factors such as climate, economic conditions, and access to healthcare 

(Chikoko et al., 2021). 

The District of Mt Darwin, which is found in Zimbabwe’s Mashonaland Central Province, is 

mostly rural and has different levels of healthcare access with 11 health clinic and 1 hospital. The 

district frequently experiences malaria outbreaks, especially during the rainy season when 

mosquito populations rise (Chikoko et al., 2021). Analyzing malaria trends in this area is important 

for planning effective disease control strategies. The Ministry of Health and Child Care (MOHCC) 

collects data on malaria cases and deaths using the DHIS2 and Impilo health information systems, 

making it possible to conduct a detailed analysis of malaria trends. 

Although there have been studies on malaria patterns in Zimbabwe, very few have focused on Mt 

Darwin District. Research highlights the need of Mt Darwin oriented strategies due to the district’s 
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unique malaria trends. However, there has been little use of time series forecasting methods to 

predict malaria cases and deaths in the area. Using historical data to forecast malaria trends can 

help improve response strategies and allow for timely interventions to reduce infections and 

fatalities. 

This study aims to address this gap by using historical malaria data from the MoHCC to build 

predictive models. By applying artificial intelligence-based time series forecasting, the research 

will provide useful insights to help improve malaria control efforts in Mt Darwin District. The 

findings will assist in better resource allocation and the development of targeted malaria prevention 

programs. 

1.2 PROBLEM STATEMENT 
 

Malaria continues to pose a significant public health challenge in Zimbabwe, particularly in the 

rural district of Mt Darwin. Despite ongoing efforts by the Ministry of Health and Child Care, the 

district frequently experiences seasonal outbreaks of plasmodium falciparum malaria often 

resulting in avoidable loss of life. This is because the district lacks predictive tools and predictive 

statistical insights into the epidemic. Without predictive insight, and planning for future outbreaks, 

medical supply distribution intervention strategies become fruitless rather than positive. This 

research therefore proposes the development of a forecasting model using both traditional time 

series methods such as the Autoregressive Integrated Moving Average (ARIMA) and 

computational intelligence driven models, specifically integrated artificial neural networks 

(IANNs) which will see a combination of Feedforward Neural Networks (FFNN) with Long Short 

Term Memory (LSTM) and Convolutional Neural Networks (CNN) architectures. The study aims 

to provide statistically driven insights into malaria epidemiology in Mt Darwin, ultimately 

enhancing the district’s epidemic response systems and contributing to improved public health 

outcomes. 

 

1.3 RESEARCH OBJECTIVES & QUESTIONS  
 

1.3.0 OBJECTIVE 

1. To build and apply an ARIMA models using the Box-Jenkins approach. 

2. To build and apply IANN (integrated artificial neural networks) using computational 

intelligence techniques. 

3. To compare the forecasting performance of ARIMA and IANN models using appropriate 

statistical performance metrics. 
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4. To forecast Plasmodium falciparum malaria incidence and mortality trends in Mt Darwin 

District for the period 2025 to 2030 using the best performing model. 

5. To provide data-driven insights that support malaria surveillance and guide intervention 

planning for the District Health Administrator (DHA) and the Ministry of Health and Child 

Care (MoHCC) 

1.3.1 QUESTIONS  

 

1. Is there a statistical trend on plasmodium falciparum malaria cases and mortality from the 

historical data that can be mathematically computed? 

2.  (a) Can a time series model be developed to estimate future plasmodium falciparum cases 

incidence? 

 (b) Can a time series model be developed to estimate future plasmodium falciparum malaria 

mortality? 

3. How do seasonal variations affect cases and mortality incidence of plasmodium falciparum 

malaria in the district? 

4. Is there a significant difference in forecasting accuracy of traditional time series models 

compared to computational intelligence driven integrated artificial neural network hybrid 

models in forecasting of the plasmodium falciparum epidemic? 

 

1.4 SCOPE OF THE STUDY  
 

This research aims to build a forecasting model tailored to predict trends in plasmodium falciparum 

malaria incidence and related mortality in Mt Darwin District. It utilizes historical records 

extracted from the Ministry of Health and Child Care’s DHIS2 and Impilo health systems, covering 

previous reporting periods and extending projections through to 2030. The study compares 

classical ARIMA models with integrated artificial neural network (IANN) approaches to 

determine which model best captures temporal disease patterns. Although the findings will support 

evidence based planning for the District Health Authorities (DHA), District Medical Officers 

(DMO), and the MoHCC, they are designed specifically for Mt Darwin and may not generalize to 

other settings. 

 

1.5 SIGNIFICANCE OF THE STUDY  
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The research study seeks to offer new insight into the patterns and trends of plasmodium 

falciparum malaria incidence and mortality in Mt Darwin District, a region that has received 

limited attention in previous forecasting research. By applying both traditional statistical models 

and hybrid computational intelligence approaches, the project aims to support the District Health 

Administrator and District Medical Officer with tools that can strengthen early detection and guide 

health planning. Reliable projections can improve the timeliness and efficiency of malaria response 

strategies in this high burden setting. 

In Mt Darwin, where seasonal outbreaks often strain limited health resources, enhancing predictive 

capacity is essential. This research addresses a practical need for forward looking planning tools 

in epidemic management. At the national level, the research study supports Zimbabwe’s broader 

health strategy by promoting the integration of local data and forecasting in policy and resource 

allocation. Its approach to combining computational models with epidemiological data may also 

offer lessons for other rural malaria endemic regions and contribute to ongoing global efforts 

toward malaria control and elimination. 

Aligned with education 5.0 and the Heritage based curriculum, the study reflects innovation driven 

problem solving, fostering the integration of cutting edge technologies such as computational 

intelligence into real world socio-economic challenges faced by Zimbabwe. It also contributes to 

the academic fields of public health informatics, application of computational intelligence and 

statistics, offering a valuable case study for future interdisciplinary research in low resource 

settings. 

 

1.6 ASSUMPTIONS OF THE STUDY  
 

 The study assumes that the secondary data obtained from the DHIS2 and Impilo systems 

is complete, reliable, and free from reporting errors. 

 It is assumed that the time series data used in the analysis does not exhibit autocorrelation 

that would violate model assumptions. 

 No major structural changes such as new variant outbreaks and health system disruptions 

occurred during the study period. 

 The malaria incidence and mortality data are considered homogeneous across Mt Darwin 

District. 

 

1.7 LIMITATIONS OF THE STUDY  
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 This research is limited to time series forecasting methods and does not incorporate 

alternative statistical or machine learning techniques. 

 The analysis is restricted to Mt Darwin District therefore; the results may not be 

generalizable to other regions of Zimbabwe. 

 The forecasting model is built only on historical time series data, excluding explanatory 

variables such as rainfall, temperature, and population mobility which are known to 

influence malaria dynamics. 

 The research study does not account for possible data incompleteness in the DHIS2 and 

Impilo datasets which could impact model accuracy. 

1.8 DEFINITION OF KEY TERMS  

1. Malaria: Malaria is a potentially fatal illness resulting from infection by Plasmodium 

parasites, which are transmitted to humans through bites from infected Anopheles 

mosquitoes (WHO, 2023). 

 

2. Plasmodium falciparum is the most lethal of the five malaria parasite species known to 

infect humans. It is highly prevalent in sub-Saharan Africa and accounts for the largest 

proportion of malaria-related fatalities worldwide (Centers for Disease Control and 

Prevention, 2023). 

 

3. Time Series: A sequential collection of data points measured at consistent time intervals. 

(Brockwell and Davis, 2016). 

 

4. Forecasting: Estimating future values based on historical data through the application of 

statistical models (Hyndman and Athanasopoulos, 2018). 

 

 

5. ANN: Artificial Neural Networks are computational models structured in layered 

networks of interconnected processing units. These systems are loosely inspired by the 

biological brain and are capable of recognizing intricate patterns within data by 

transmitting signals through multiple weighted connections (Russell and Norvig, 2016). 

 

6. Feedforward Neural Network: A type of ANN where information flows in a single 

direction from input to output layers, without cycles or loops. (Mapuwei et al., 2023). 
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7. Convolutional Neural Network: A specialized ANN architecture designed to process grid-

like data, especially effective in extracting spatial features through convolutional layers. 

(LeCun et al., 2015). 

 

8. Long Short-Term Memory: A type of recurrent neural network (RNN) that captures long-

term dependencies in sequential data through memory cell structures, overcoming the 

vanishing gradient problem common in traditional RNNs (Hochreiter and Schmidhuber, 

1997). 

 

 

9. Integrated Artificial Neural Network: A hybrid model that combines multiple ANN 

architectures into a unified structure to enhance prediction accuracy and learn both spatial 

and temporal features from time series data (Zhang et al., 2021). 

 

10. The Autoregressive Integrated Moving Average (ARIMA) model is a classical approach 

to time series forecasting that combines autoregressive terms, differencing to ensure 

stationarity, and moving averages to account for past error patterns (Box & Jenkins, 

1976). 

 

11. Mt Darwin District: A rural district in Zimbabwe’s Mashonaland Central Province. 

 

 

1.9 CHAPTER SUMMARY  
 

As malaria continues to pose significant health challenges in Mashonaland Central Province 

particularly in rural districts like Mt Darwin, there is a need for localized forecasting models that 

support early detection and better intervention. This chapter introduced the background and 

validation for the study, outlined the research objectives, discussed the assumptions and limitations 

guiding the investigation. These elements provide the foundation for the upcoming literature 

review which will examine the theoretical and empirical basis for applying time series and 

computational intelligence hybrid neural network models in forecasting malaria incidence and 

mortality. 
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Chapter 2 

2.0 INTRODUCTION  
 

This chapter reviews theoretical and empirical studies on time series forecasting, focusing on its 

application in artificial intelligence driven models and traditional forecasting methods for malaria 

incidence and mortality. It also highlights key findings in the field and provides an overview of 

time series concepts. 

 

2.1 THEORETICAL LITERATURE  
 

2.2.0 Plasmodium Falciparum Malaria 

Malaria is known to result from plasmodium parasites which are spread by a bite of a female 

anopheles mosquito. This plasmodium has four known species which are plasmodium falciparum, 

plasmodium vivax, plasmodium ovule, and plasmodium malaria, with plasmodium falciparum 

responsible for most malaria deaths, especially in Africa. Malaria parasites enter the bloodstream 

of the host person to destroy essential red blood cells, the destruction leads to fever, flu-like 

symptoms with vomiting and diarrhea, and if left untreated, the condition may progress to coma 

and ultimately prove fatal. (Alhassan et al., 2017). 

2.2.1 Malaria Epidemiology in Zimbabwe 

Zimbabwe has achieved noticeable reductions in malaria cases and mortality rates through various 

targeted health interventions however, rural districts continue to face persistent challenges due to 

limited access to healthcare services (Mutambara et al., 2019). Plasmodium falciparum, the 

dominant species responsible for malaria in the country continues to pose a significant public 

health burden. The disease's transmission patterns are shaped by a combination of environmental 

conditions, economic constraints, and the poor healthcare system in the country (Chikoko et al., 

2021). Time series forecasting has proven effective in malaria control by enabling timely 

interventions. Chikoko et al., (2021) demonstrated how forecasting models successfully predicted 

malaria cases, improving planning and control efforts. Forecasting has also been linked to faster 

response times during peak transmission seasons, reducing morbidity and mortality (Mavundla et 

al., 2020). 

Despite advancements in data collection and analysis existing forecasting methods often struggle 

to accurately predict malaria incidence due to the complex interactions between environmental, 

climatic, and socio-economic factors (Briar et al., 2020). The lack of region specific models further 
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limits intervention effectiveness, as generic approaches fail to address local epidemiological 

dynamics (Muller et al., 2019). 

2.2.2 TIME SERIES  

Box, Jenkins, Reinsel, and Ljung (2016) describe a time series as a series of observations collected 

sequentially over time. Similarly, Brockwell and Davis (2016) define a time series as a collection 

of data points, 𝑋𝑇 , where each point is recorded at a specific time 𝑡. A discrete time series occurs 

when observations are made at distinct points in time, while a continuous time series is generated 

when data points are recorded continuously over a time interval, such as when 𝑇0 = [0,1]. 

 

2.2.3 TIME SERIES ANALYSES 

 

Mapuwei et al., (2022) explain that time series analysis helps to uncover the underlying processes, 

understand how data changes over time and assess the impacts of planned or unplanned activities. 

In addition, Weigend and Gershenfeld (1994) highlight that the three primary goals of time series 

analysis are forecasting, modeling, and characterizing the time dependent behavior of data.  

 

2.2.4 TIME SERIES FORECASTING  

 

Lim and Zohren (2021) define time series forecasting as the process of predicting future values of 

a target variable 𝑌𝑖𝑡  for a specific entity 𝑖 at time 𝑡. These entities represent logical groups of 

temporal data, such as measurements of vital signs from various patients in medicine, which can 

all be observed simultaneously. They further explain that in the simplest form of forecasting one-

step ahead models the prediction takes the following form: 

𝑌i,t + 1  = f( Yi,t-k , Xi,t-k , Si ) -------------------------------------------(2.1) 

Where,   𝑌i,t + 1 is the model forecast  

              Yi,t-k = () , Xi,t-k ;t = () are observations of the target and exogenous inputs    

respectively over- back window k, Si. 

 

2.2.5 COMPONENTS OF TIME SERIES  
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Time series data typically exhibit four structural elements which are trend, seasonality, cyclical 

behavior, and random fluctuations. According to Shumway and Stoffer (2017) recognizing these 

components is essential for selecting suitable forecasting models. The trend reflects gradual, long-

term movements in the data, often driven by macro-level influences such as policy reforms or 

demographic shifts (Davis and P.J., 2002). Mapuwei et al., (2022) noted that seasonality is the 

periodic variations that repeat at consistent intervals, like monthly or quarterly changes often 

shaped by climatic or institutional schedules and cyclic behavior, while also recurring, unfold over 

longer durations and are typically influenced by broader social or economic dynamics, making 

them harder to anticipate with precision (R.H. and Stoffer, 2017). Lastly, Woodward et al., (2017) 

described irregular components as noise or non-recurring anomalies that obscure underlying trends 

and are not explained by systematic patterns. 

2.2.6 ASSUMPTIONS OF TIME SERIES 

 

Several statistical assumptions support time series modeling, and ensuring these conditions are 

met enhances the reliability of the forecasts. One key assumption is stationarity, where the time 

series should exhibit no systematic change in its mean or variance, and all seasonal or periodic 

influences should be removed (Chatfield, 2003). Non-stationary data can often be transformed 

using differencing or logarithmic adjustments. Common tests for stationarity include the 

Augmented Dickey-Fuller (ADF) test and root tests (Mapuwei et al., 2022). Tsay (2010) 

distinguished between strict stationarity, which implies that the entire distribution remains 

unchanged over time, and weak or second-order stationarity as where only the mean, variance, and 

auto covariance remain constant. Another critical assumption is normality, which assumes that the 

data follow a normal distribution and violating this assumption may lead to inaccurate parameter 

estimates. Assessment testing tools include histograms, box plots, Q-Q plots, and probability 

distribution visualizations (Das and Imon, 2017). Independence of residuals is also important as it 

means that autocorrelation should be minimal and this is typically assessed using the Durbin-

Watson test, residual plots, and ACF/PACF plots (Mapuwei et al., 2022). Finally, according to 

Mapuwei et al., 2022 homoscedasticity requires that the residuals maintain constant variance, 

which can be evaluated using scatter plots that show a consistent spread around a central line with 

no visible trend. 

 

2.2.7 Models in Time Series Analysis  

 

Throughout data science evolution, there has been a shift from traditional time series models, such 

as ARIMA and exponential smoothing as noted by Box, G. E. P., and Jenkins, G. M. (1976), to 
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modern deep learning techniques like ANNs RNNs, LSTMs, and IANN. This research will utilize 

both methodologies. 

 

2.2.7.1 Traditional Time Series Models  

 

(a) The Moving Average (MA) 

Tsay, (2010) defined the moving average (MA) as the average of a specified number of time series 

values surrounding each point t in the series. An example of a moving average series with order q 

is denoted as {MA (q)}  

 

𝑌𝑡 = 𝑎𝑡 +  𝜃𝑎𝑡−1 + 𝜃2𝑎𝑡−2 + ⋯ + 𝜃𝑞𝑎𝑡−𝑞 -------------------------------(2.2) 

 

(b) Autoregressive (AR) Model 

A sequence is considered autoregressive if its current value is influenced by past values, along 

with a random shock (DaHye et al., 2021). Thus, 

 

𝑌𝑡 =  ∅1𝑦𝑡−1 + ∅2𝑦𝑡−2 + ⋯ + ∅𝑝𝑦𝑡−𝑝 + 𝑎𝑡 -----------------------------(2.3) 

 

Where 

 𝑌𝑡– Current Value, 𝑌𝑡−𝑝 is the value at lag p  

𝑎𝑡 – White noise error  

∅1,∅2,, … , ∅𝑝, – Parameter of the model which is estimated from the data. 

 

(c) Autoregressive Moving Averages (ARMA) Model 

Tsay (2010) described the ARIMA model as a combination of autoregressive (AR) and moving 

average(MA) models, compacted to minimize the number of parameters and ensure simplicity in 

its parameterization. Similarly, Box, Jenkins, Reinsel, and Ljung 2015 referred to ARIMA as a 

blend of both AR and MA models. They further argued that when the equation of the first-order 

AR model approaches the starting point it will lead to an infinite moving average. To effectively 

use the ARMA model, the values p and q values must be determined, the value of p corresponds 
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to significant terms in the autocorrelation function (ACF), and q represents the number of 

significant terms in the partial autocorrelation function (PACF). If a time series obeys an ARMA 

(p, q) model, it is considered to exist. 

𝑌𝑡 = 𝜎 + ∅1𝑦𝑡−1 + ∅2𝑦𝑡−2 + ⋯ + ∅𝑞 ∈𝑡−𝑞 ------------------------------(2.4) 

, ∈𝑡−𝑞  is considered to be the white noise process. 

 

 P.J Brockwell and R. A. Davis (2001) argued that {𝑋𝑡} is said to be ARMA(p, q) process if {𝑋𝑡}  

is stationary and if for every 𝑡,  

𝑋𝑡 − 𝜑1𝑋𝑡−1 − ⋯ − 𝜑𝑝𝑋𝑡−𝑝 = 𝑍𝑡 + 𝜃1𝑍𝑡−1 + ⋯ + 𝜃𝑞𝑍𝑡−𝑞 -----------------(2.5) 

 

 where {𝑍𝑡} ∼ WN (0, σ2) and the polynomials (  1 − 𝜑1𝑍 − ⋯ − 𝜑𝑝𝑍𝑃  ) 

 and (1 + θ1Z + ... + θQ Zq) have no common factors. 

 

(d) SARIMA MODEL 

A SARIMA, or Seasonal Autoregressive Integrated Moving Average, is described by 

Ramasubramanian (2015) as a model that can be applied to both seasonal and non-seasonal data. 

It adjusts for seasonal variations in the data to achieve stationarity. The model is defined as follows:  

 

(1 − ∅ 𝛽)(1 − ∅1𝛽𝑠)(1 − 𝛽)(1 − 𝛽𝑠)𝑦𝑡 =  (1 + ∅1𝛽)(1 + ∅1𝛽𝑠)𝜀𝑡 -----(2.6) 

 

, s is seasonal lag period 

𝛽 is the backshift operator 

𝜀𝑡 are noise  

 

2.2.7.2 Artificial Neural Networks  
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(a) Overview of ANN 

Artificial neural networks (ANNs) are a wide-ranging category of machine learning models 

designed based on how biological neural networks, such as the human brain process information 

and a make decision. These networks are made up of layers of interconnected nodes, or neurons, 

which apply various activation functions to transform input data for tasks like predictions and 

classifications. Bhimala, Patra, Mopuri, and Mutheneni (2021). In a similar vein, Mapuwei et al., 

(2022) describe an artificial neural network as an information processing system created to 

generalize mathematical models based on human neural biology as shown by figure 2.2.1 below. 

 

 

 

Figure 2.2.1 Artificial Neural Network Visual Architecture 

 

(b) Integrated Artificial Neural Networks (IANN) 

 

Zhao et al., (2020) describe integrated artificial neural networks (IANNs) as advanced hybrid 

frameworks that bring together different deep learning architectures to enhance forecasting 

precision. Verma et al., (2021) and Farooq and Bazaz (2021) supported their theoretical potential 

through applications in epidemic modeling. However, these models were implemented in large, 

urban populations with rich datasets a contrast to the data scarcity and reporting delays common 

in Mt Darwin District. This study builds on those frameworks while tailoring them to a rural, 

malaria endemic setting where seasonality and limited data availability challenge predictive 

accuracy. 
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(c) Multilayer Perceptron (MLPs) 

 

The figure shown below is a multilayer perception an artificial neural network as described by 

Nielsen et al. (2016) are neural network model which has multiple hidden layers (the middle 

layers), the output layer (the rightmost) which houses the output neurons and final the input layer 

(the leftmost) which houses the input neurons. A good example of the MLP models is the FFNN 

feedforward neural networks as shown by the diagram below. 

Figure 2.2.2 Multilayer Perceptron Model Architecture 

 

 

 

 

(a) Feed-Forward Neural Networks 

 

FFNN feedforward neural networks are neural networks where the information is always fed 

forward and never fed back and their other characteristic is that the output from one layer is used 
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again in the next layer and is different from recurrent neural networks which have feedback loops. 

(Nielsen et al. 2016) 

According to Mapuwei et al., (2022), the structure is defined by the number of hidden and output 

layers, and the feedforward neural network structure can be generalized with the assistance of the 

following equation. 

𝐼 − (𝐻1, 𝐻2, 𝐻3, … , 𝐻𝑁) − 𝑂, -------------------------------------------(2.7) 

Where 

I = input nodes 

𝑯𝒏= total of neurons in hidden layer, determined by the formula × =

𝑓 (∑ 𝑊𝑗𝑘 𝑌𝑗 + 𝜃𝑛
𝑗=1 )  

and 𝑜 = the number of neurons in the output layer, determined by 𝑌 =

𝑓 (∑ 𝑊𝑘 + 𝑌𝑘 + 𝜃𝑛
𝑘=1 ) 

 

The figure below shows the architecture of an FFNN (6-(4,3)-1) model. 

 

Figure 2.2.3 FFNN (6-(4,3)-1) Architecture Model 
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According to Nielsen et al., (2016) the output is based on the perception rule which can be written 

as 

Output = {
0 𝑖𝑓 𝑤. 𝑥 + 𝑏 ≤ 0
1 𝑖𝑓 𝑤. 𝑥 + 𝑏 > 0

  -------------------------------------------(2.8) 

Where   𝑤 ∗ 𝑥 ≡ ∑ 𝑊𝑗𝑋𝑗𝑗  , w and x are vectors whose components are weights 

and inputs, respectively. 

and   b represents perception’s bias , 𝑏 ≡  −𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

 

2.2.7.3 FFNN Model Training and Selection 

 

Training a neural network is the process of teaching it to make accurate predictions and decisions 

based on its internal parameters which are weights and biases based on examples of input-output 

data. According to Mapuwei et al., (2022), the whole process is primarily based on determining 

weights and the number of neurons in the network. 

 

(a) Forward Propagation: 
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This a training process, where data is fed starting from the input layer moving through the hidden 

layers to the output layer and in each layer, data is transformed by weights and activation functions, 

which helps the network learn complex patterns. 

(b) Back Propagation: 

The method is used to update the weights and biases of the network in order to minimize the loss 

function by calculating the gradient or rate of change of the loss concerning each weight by 

applying the chain rule of calculus. This process is done by propagating the error backward through 

the network (from the output to the input) and updating the weights to reduce the error. 

 

(c) Model Selection 

 

Husseien et al., (2017) assessed the predictive accuracy of different neural network models for 

malaria incidence using data from Sudan. Their evaluation relied on mean square error (MSE) and 

root mean square error (RMSE) as performance metrics. The model yielding the lowest error 

values was considered the most effective for forecasting purposes. 

 

𝑀𝑆𝐸 =  
1

𝑁
 ∑ (𝑌𝑡 − 𝑌𝑡)2𝑁

𝑡=1  ---------------------------------------(2.9) 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑌𝑡 − 𝑌𝑡)2𝑁

𝑡=1  ------------------------------------(2.10) 

2.2 EMPIRICAL LITERATURE  

 

ARIMA MODELS 2.3.1 

 

A study by Mapuwei et al., (2022), utilized the Box-Jenkins methodology in building an ARIMA 

model to forecast tobacco production in Zimbabwe. The ARIMA (1,1,0) with no seasonality was 

identified as the best model. The data was nonstationary as the ADF test failed to reject the null 

hypothesis as the p-value obtained was 0.6106 > 0.5 and also evidenced by the absence of constant 

variation although a decreasing trend in tobacco production was noticed. 
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In their study, Alhassan et al., (2017) applied the Box-Jenkins approach to develop an ARIMA 

model for predicting malaria incidence in the Kasena Nankana Municipality. The objective was to 

identify a reliable model for short-term forecasting, with the ARIMA(1,0,1) configuration 

emerging as the most suitable after conducting standard adequacy tests. This model was then 

employed to project monthly malaria cases over a two-year horizon. Findings revealed a steadily 

increasing trend, shaped by a quadratic growth pattern, prompting the authors to recommend 

proactive interventions by the Ministry of Health. These included awareness campaigns to address 

the persistent nature of the disease and resource planning within health facilities in anticipation of 

future changes in case volumes. 

Kumar et al., (2014), noted that ARIMA models were the simplest and yet the most reliable time 

series analysis tool for malaria forecasts after he had employed them to forecast malaria cases from 

2006 to 2013 in the rural areas of Najafgarh, India. ARIMA (0,1,1) (0,1,0)12, was the best fit with 

a seasonal component that was evidenced by ACF autocorrelation function which showed a 

significant peak at a lag of 12 months (autocorrelation = 0.675, Box-Ljung statistics (P=0.000)). 

Since the seasonal pattern was detected an ordinal R- squared was used as goodness of fit statistics, 

and it indicated a value of 0.725 meant that the model could explain 72.5% variability in the time 

series data. While Kumar highlighted ARIMA's simplicity and reliability in capturing short term 

patterns of malaria incidence, its effectiveness is limited when dealing with nonlinear and 

nonstationary data, which is often characteristic of malaria outbreaks. In contrast, Bhimala et al., 

(2021) demonstrated that artificial neural networks outperform traditional statistical models in 

capturing complex nonlinear relationships in malaria cases. However, the implementation of 

ANNs requires large datasets and more computational resources, which may not always be 

available in low resource settings like rural Zimbabwe. This contrast highlights the potential value 

of hybrid models that balance interpretability with predictive power. 

 

NEURAL NETWORK MODELS 2.3.1 

 

Yamak et al., (2020) conducted a comparative analysis of three different machine learning models 

in making a time series forecast of bitcoin prices. The models were ARIMA, GLU (gated recurrent 

units) and LSTM (long short-term memory), the ARIMA gave best results at MAPE =2.76% and 

RMSE = 302.53 which was outperformed by GLU model however the LSTM was chosen as the 

best model with 3.97% and 381.34 MAPE and RMSE respectively.  

Mapuwei et al., (2020) conducted a comparative study of an ARN (FFNN) feedforward neuron 

network and (SARIMA) seasonal autoregressive integrated moving average in an effort to model 

city council ambulance demand. Performance calculation suggested an FFNN with an MAE = 94.0 

RMSE = 137.19 and test value p = 0.493(>0.05) was the best model for short-term annual forecasts 

rather than SARIMA with performance value of 105.71,125.28 and p= 0.005(<0.05), respectively.   
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Research work on integrated artificial neural networks by Zhang et al., (2021) demonstrated the 

value of combining neural architectures. In his research, he reviewed hybrid deep learning 

frameworks, the CNN + LSTM with attention mechanisms outperformed single architecture 

models in time series application. Similarly, Wang and Li (2020) utilized a CNN-LSTM fusion for 

traffic flow prediction and their research showed that with convolutional layers to extract local 

temporal features LSTM layers then model for improved accuracy. Both the research studies 

although independent provide a strong precedent for integrated artificial neural networks compared 

to single architecture neural networks. 

Epidemic research work by Verma, Mandal, and Gupta (2021) demonstrated that a CNN-LSTM 

hybrid model outperformed classical approaches in forecasting COVID-19 cases in India by 

effectively capturing both spatial and temporal dependencies. Similarly, Bhimala et al., (2021) 

showed that incorporating weather variables into LSTM-based models significantly improved the 

prediction of COVID-19 case trends. 

 

RESEARCH GAP 2.4 

 

The research gap exists in the lack of localized studies on the application of time series forecasting 

for Plasmodium falciparum malaria incidence and mortality trends in the Mt Darwin District. 

Additionally, there is a need for comparative studies between modern computational intelligence 

driven integrated artificial neural network models and autoregressive integrated moving average 

(ARIMA) models. Previous studies by Alhassan et al., (2017) and Kumar et al., (2014) were 

conducted primarily in India, focusing on the municipality of Kasena Nankara and the rural 

community of Najafgarh, respectively, and only utilized the autoregressive integrated moving 

average (ARIMA) model. 

 

PROPOSED CONCEPTUAL METHOD 2.5 
 

This research suggests building a time series prediction models for forecasting Plasmodium 

falciparum malaria incidence and mortality trends. The methodology starts with the building of a 

classical ARIMA model based on the Box-Jenkins method. In tandem, an Integrated Artificial 

Neural Network (IANN) model, mainly centered on a Feedforward Neural Network (FFNN), will 

be built and compared. Additionally, advanced hybrid architectures combining FFNN with Long 

Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) will be implemented to 

enhance predictive performance. 
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Each model will be trained using historical data from January 2013 to December 2023 and 

evaluated on 2024 data. Performance will be assessed using standard metrics such as RMSE, MAE, 

and R². The best-performing model will then be selected and used to forecast monthly and yearly 

malaria incidence and mortality from 2025 to 2030. 

The proposed conceptual flowchart, presented in the figure below, outlines the methodological 

framework for model development, evaluation, and forecasting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2.4 Proposed Conceptual Flowchart Structure 
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CHAPTER SUMMARY 2.6 

 

This chapter reviewed both the theoretical and empirical literature on the application of time series 

forecasting to plasmodium falciparum malaria incidence and mortality. Traditional time series 

models such as ARIMA and SARIMA were discussed for their strength in handling linear time 

series patterns, while the growing role of ANN models driven by computational intelligence was 

highlighted for their capability in capturing nonlinear dependencies. A research gap was identified 

in the limited application of ANN computational intelligence driven hybrid models within the rural 

and malaria endemic district of Mt Darwin. Based on the literature, this study adopts a 

computational intelligence hybrid approach with the integration of CNN, LSTM, and FFNN 

architectures due to their demonstrated strength in capturing both short and long term temporal 

patterns in complex epidemiological datasets. A conceptual framework was also presented to guide 

subsequent data analysis and interpretation. The next chapter outlines the research methodology 

and data collection techniques used in this study. 
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Chapter 3 

3.0 INTRODUCTION  

 

This chapter presented the research methodology used in the study, including the research design, 

data sources, sampling procedures, research tools, and analytical techniques. A quantitative 

approach was adopted, using time series forecasting methods to analyze historical malaria 

incidence and mortality data in Mt Darwin District. Specifically, ARIMA models and integrated 

artificial neural network (IANN) models were applied to generate forecasts. The chapter also 

addressed ethical considerations regarding the use of secondary health data according to the Public 

Health Act of Zimbabwe. 

 

3.1 RESEARCH DESIGN  

 

In this study, the researcher used a quantitative research design, a methodology that predicts future 

outcomes by analyzing patterns and trends in historical data. Quantitative research focuses on 

collecting numerical data and applying statistical and computational techniques to analyze 

relationships, test hypotheses, and make future predictions. This research included two variables: 

the number of malaria incidences at time 𝑡 and the mortality rate (number of deaths) at time 𝑡. 

3.2 SECONDARY DATA SOURCES  

 

This research study primarily relied on secondary data which was drawn from the two official 

electronic health records (EHR) platforms which are Impilo health information systems and dhis2 

system. Developed with input from local stakeholders and licensed under the Ministry of Health 

and Child Care (MoHCC), Impilo is a healthcare management system designed to optimize the 

management of health data across Zimbabwe by enabling healthcare providers to access, manage, 

and share patient information more efficiently. (impilo health systems, 2024). According to DHIS2 

(2023), the district health information software 2 (dhis2) is an electronic health records 

management system that is used by district health authorities to collect, store, and analyze health 

related data to improve decision-making. 

3.3 TARGETED POPULATION AND SAMPLING PROCEDURES  

The research study primarily focused on the Mt Darwin District which is found in one of the 

biggest province Mashonaland Central Province. The researcher identified the district as a malaria 

endemic hotpot area making it more suitable to conduct the study for time series forecasting of 

plasmodium falciparum malaria incidences and mortality rate. Through the application of the 
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purposive sampling technique, the study took into account historical data on the number of malaria 

incidences and mortality from 2013 to 2023 to give a total of 120 monthly data observations points 

as the sample size for each time series variable. 

3.4 RESEARCH INSTRUMENTS  

 

The researcher mainly used computational tools as research instruments. Microsoft Office 

packages including Excel and Power BI were utilized. Excel was used as the main data birth-base 

after downloading it from the dhis2 servers and Power BI for visualization of results tables and 

plots. Then the R 4.4.1 statistical software and python 3.10 in google colab development 

environment, and visual code development environment were used for advanced data analytic such 

as data reprocessing, model building, model testing and performance measurements for the 

ARIMA and IANN (FFNN) based models respectively. 

3.5 DATA ANALYSIS PROCEDURES  

 

The main objective of this project was to build an adequate time series model for forecasting future 

Plasmodium Falciparum malaria incidence and mortality rates for Mt Darwin district. Data for the 

research was secondary data retrieved from the dhis2 server stationed at Mt-Darwin District 

Hospital for the years 2013 through to 2024. The 2013 to 2023 data was used for model building 

whilst 2024 data was used for model performance checking and testing and forecasts are to be 

made for the year 2025 to 2030. The statistical techniques used in model building and forecasting 

were the Box-Jenkins methodology for building ARIMA models and integrated artificial neural 

networks based on a feed-forward neural network an ANN process of model analysis. 

 

3.6 THE BOX-JENKINS METHODOLOGY FOR BUILDING ARIMA 

MODEL  

 

Box-Jenkins method, named after its creators George Box and Gwilym Jenkins, who introduced it 

for the first time in the 1970s, is typically used for the prediction of economic, financial, health, 

and other time-series data. Box-Jenkins offers a structured method to time series data modeling 

and forecasting mainly by utilizing ARIMA models (Box and Jenkins, 1976). Mapuwei et al., 

(2022) provide three iterative steps in the method: model identification, parameter estimation, and 

diagnostic checking while Alhassan et al., (2017) added forecasting as the fourth iterative step. In 

addition, the method can be applied in datasets with at least 30 observations and was readily 

adopted by the researcher as the sample database that was utilized in this research study contained 

120 observations for each time series variable. 
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3.6.0 MODEL IDENTIFICATION (SELECTING AN INITIAL MODEL)  

The researcher first determined whether the series is stationary or not by considering the graph 

ACF. According to Alhassan et al., (2017), if the ACF graph values either cut off fairly quickly or 

die down extremely quickly then it is considered stationary otherwise if the ACF dies down slowly 

it is considered non-stationary. The researcher learned that the series was not stationary and could 

be converted to stationarity by differencing the series and once stationary series status was 

obtained, the form of the model to be used was identified. 

The autocorrelation function (ACF) can be calculated using the formula below 

  

𝑘 = 𝑌𝑘𝑌0  𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑎𝑡 𝑙𝑎𝑔 𝑘 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ------------------------------(3.1) 

 PACF is calculated by the formula below 

 

𝐾𝑘 = 𝐶𝑜𝑟𝑟(𝑌𝑡, 𝑌𝑡−𝑘| + 𝑌𝑡−1, 𝑌𝑡−2, … 𝑌𝑡−𝑘+1) ----------------------------------(3.2) 

 

3.6.1 MODEL ESTIMATION AND EVALUATION  

 

Alhassan et al., (2017) suggest that once the model has been identified, the next stage in the Box-

Jenkins methodology chronologically sequence is to estimate parameters, the main method of 

estimating parameters is the maximum likelihood estimation and with the help of R-console 

statistical software the researcher utilized the method. 

 

3.6.1.0 MLE ESTIMATION OF ARIMA MODEL OVERVIEW 

 

An ARIMA model is denoted as ARIMA (p, d, q) where: 

P is the order of autoregressive (AR) part 

d is the degree of differencing required to make the series stationary 

q is the order of moving average (MA) part. 

 

3.6.2 MODEL CHECKING (goodness of fit)  
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In this iterative step, the researcher checked for model adequacy by considering the normality 

(normal distribution) of the residuals from the ARIMA model. Alhassan et al. (2017) argued that 

overall model adequacy is done using the Ljung-box statistic given below: 

 

𝑄𝑚 = n( n + 2 ) ∑
𝑟𝑘2(𝑒)

𝑛−𝑘
𝑚
𝑘=1 ~𝜒2 m – r -------------------------(3.3) 

,Where  :    e is the residual autocorrelation at lag 

                  n is the number of residual  

                  m is the number of times lags is included in the test. 

If the p-value associated with the Q statistic is small, then the model is considered not inadequate, 

and if else the researcher continued with the analysis. 

 

3.6.3 FORECASTING  

According to the Box-Jenkins methodology, forecasting involves determining the expected values 

at a specific point in time (Alhassan et al., 2017). After confirming that the model fit the data well, 

the researcher proceeded with multi-step ahead forecasting of future values. While the accuracy of 

the forecast is generally expected to decrease as the forecast horizon extends, the forecast was 

based on the model's coefficients and past observed values.  

 

3.7 THE ARTIFICIAL NEURAL NETWORKS METHODOLOGY  

 

DATA PREPROCESSING 3.7.0 

Data preprocessing was the first and most critical step in designing an Artificial Neural Network 

(ANN). This process included data cleaning, coding, normalization (standardization), and splitting 

the data into training, validation, and test sets according to the preprocessing setup by Mapuwei et 

al., (2020). The researcher performed data cleaning by addressing missing values, and replacing 

them with measures of central tendency from the respective rows or columns. 

Arithmetic mean  = 
∑ 𝑋𝑖

𝑛
𝑖=1

𝑛
  --------------------------------------------------(3.4) 

, 𝑋𝑖  = each data point and n is the number of data points 

Median = if there is an odd number of data points, it is the middle value in a sorted dataset. If there 

is an even number of data points, the median is the average of the two middle values. 
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Mode is the value that occurs most frequently in the dataset. 

Data normalization was done to ensure that all input features are on a similar scale preventing 

some features from dominating others and making the training process more stable and efficient. 

Min-max Normalization 

X normalized  = 
𝑋−min (𝑥)

max(𝑥)−min (𝑋)
  --------------------------------------(3.5) 

 

Z-score Standardization 

 

X standardization = 
𝑥−𝜇

𝜎
 ------------------------------------------------(3.6) 

,   𝜇 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 , 𝜎 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

 

3.7.1 MODEL TRAINING AND TESTING SET  

 

At this stage, it is crucial to divide the processed data into a model building (training) set and a 

testing set, with a larger percentage of the data allocated to the model building set and a smaller 

percentage to the testing set (Mapuwei et al., 2020). The researcher first used the model-building 

set to develop the Feed-Forward Neural Network (FFNN) model, while the testing set was used to 

evaluate the forecasting accuracy. 

 

 

3.7.2 FEED-FORWARD NEURAL NETWORK ARCHITECTURE  

 

As noted by Mai et al., (2021), selecting the optimal number of hidden layers in a neural network 

lacks a standardized guideline. In most cases, researchers rely on empirical testing and iterative 

adjustments to identify a suitable architecture. This process often involves applying a generalized 

structural formula as a starting point. 

𝐼 − (𝐻1, 𝐻2, 𝐻3, … , 𝐻𝑁) − 𝑂, -------------------------------------------(3.7) 
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, Where 

I = input nodes 

𝑯𝒏 = neurons in the hidden layer, determined by the formula 

 × = 𝑓 (∑ 𝑊𝑗𝑘 𝑌𝑗 + 𝜃𝑛
𝑗=1 ) --------------------------------------(3.8) 

and O= the number of neurons in the output layer, determined by 

 𝑌 = 𝑓 (∑ 𝑊𝑘 + 𝑌𝑘 + 𝜃𝑛
𝑘=1 ) -----------------------------------(3.9) 

 

3.7.3 TRAINING A NEURAL NETWORK  

The researcher employed the backward pass method, as outlined in two separate studies by 

Mapuwei et al., (2022) and Mai et al., (2021). This method involves determining the weights and 

the number of neurons in each layer of the network. In line with their studies, the researcher began 

by initializing the weights of the neurons randomly and setting the biases to zero. Then, the 

researcher computed the gradients of the loss function with respect to the weights and biases using 

backpropagation. This process was repeated until the model converged and stopped improving. 

 

3.8  Integrated-Artificial Neural Network Hybrid Models 

 

3.8.1 Epidemiological Data Preprocessing 

 

The epidemiological data was cleaned out of any duplicates, outliers and disordered values, and 

missing values. Each time series was then scaled independently to N ~ [0,1] by the Min–Max 

normalization to align their ranges and stabilize the model building. Finally, the researcher 

generated supervised learning samples using a 12 month sliding window which is a 12 by 2 matrix 

of normalized incidence and mortality that will predict the next month’s values by feeding the raw 

last month’s values into a parallel FFNN branch in the FFNN+LSTM hybrid model, and in both 

convolutional and recurrent layers in the CNN+LSTM+FFNN hybrid. 

 

3.8.2 IANN Architecture  
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The research employed two integrated ANN hybrids to capture both short term nonlinearities and 

long term dependencies in PF incidence and PF mortality. The FFNN + LSTM parallel architecture 

simultaneously feeds the last month’s values into a small feedforward layers and the full 12-month 

sequence into an LSTM branch. The outputs are then brought together and passed through 

additional dense layers to produce dual forecasts. On the other hand, the CNN + LSTM + FFNN 

hybrids first uses a 1dimensional convolutional layer to the 12-month sequence to extract local 

temporal patterns and feeds the convolved features into an LSTM layer which models sequential 

dependencies and then route both the LSTM output and the final month’s raw values through 

FFNN layers before the final multi-output layer. Both designs as shown below on figure 4.4.1 

aimed at blending convolutional feature extraction, recurrent memory, and dense prediction in a 

unified model for monthly incidence and mortality forecasting.  

Figure 3.8.1 Trained IANN Architecture 

 

 

 

3.8.3 NEURAL NETWORKS SELECTION  

The researcher evaluated the performance of the neural network models using regression metrics 

including MSE and RMSE. These metrics provided a basis for comparing different model 

configurations. The model yielding the lowest RMSE on the test set was selected, as it 

demonstrated the highest predictive accuracy for malaria trends in Mt Darwin District. The general 

formulas for MSE and RMSE are shown below, respectively:  
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𝑀𝑆𝐸 =  
1

𝑁
 ∑ (𝑌𝑡 − 𝑌𝑡)2𝑁

𝑡=1  -------------------------------------------(3.10) 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑌𝑡 − 𝑌𝑡)2𝑁

𝑡=1  ----------------------------------------(3.11) 

 

3.9 MODEL COMPARISON  

 

The two models, the traditional ARIMA and ARN (FFNN) model were compared using the RMSE 

(root mean squared error) and MAE (mean absolute error) as model performance measures. The 

researcher also utilized the R2 (root-squared) to measure the goodness of fit of the two models. 

 

𝑀𝐴𝑃𝐸 =  ∑|𝑌𝑡 − 𝑌𝑡𝑌𝑡|𝑛 ∗ 100 -------------------------------------(3.12) 

 

Where𝑌𝑡=𝑡ℎ𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒, 𝑌𝑡 ̂ 𝑡ℎ𝑒 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑎𝑛𝑑 𝑛 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠  

 

3.10 ETHICAL CONSIDERATIONS  

 

 The researcher abided by the medical data ethics code set by the MoHCC and Medical and 

Dental Practitioners Council of Zimbabwe (MDPCZ), personal and private information 

such as names and ages of patients were avoided. 

 Data was retrieved from the allowed dhis2 domain abiding to the Public Health Act, 

Statutory Instrument 154 of 2020.  

 Also abiding to the Public Health Act, harmful representations were avoided and some 

sensitive values were normalized for reputation purposes where necessary. 

 There was no conflict of interest to be reported by the researcher.  
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3.11 CHAPTER SUMMARY  

 

This chapter detailed the methods used to build and evaluate forecasting models for the 

plasmodium falciparum malaria epidemic in Mt Darwin District. The ARIMA model was 

employed as it is usually successful in capturing linear trends and seasonality, while FFNN based 

integrated ANN hybrid models were also designed since there are able detect complex nonlinear 

patterns, a usually character of epidemics databases. The methodological choice reflects the study's 

position that a comparison of classical statistical models with neural network hybrids model offers 

a better forecasting framework, especially in health systems where both structured seasonality and 

irregular fluctuations are present. The next chapter presents the analysis results and compares 

model performance using RMSE, MAE, and R². 
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CHAPTER FOUR  

DATA PRESENTATION, ANALYSIS AND DISCUSSION 

 

4.0 Introduction 

 

This chapter focuses on data presentation, analysis, interpretation, and discussion of results. This 

was done to answer research objectives and questions. A time series forecasting of the plasmodium 

falciparum malaria epidemic was done utilizing integrated artificial neural networks and 

meaningful results and discussions were obtained. 

4.1 Preliminary Analysis 

4.1.1. Frequency on monthly incidence and mortality   

Figure 4.1.1. Monthly PF Malaria Incidence Frequency (2013 -2024) 

 

 

 

The two monthly frequency tables for malaria incidence figure 4.1.1 above and malaria mortality 

figure 4.1.2 below suggest a clear seasonal trend. The two variables show peaks between January 

and May and a decline from June to December. This pattern suggests that malaria outbreaks in Mt 

Darwin are strongly influenced by seasonal climatic factors such as rainfall and temperature which 

affect the mosquito breeding cycle. 

Figure 4.1.2. Monthly PF Malaria Mortality Frequency (2013 -2024) 
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 Table 4.1.1 Descriptive Statistics 

 

The descriptive statistics for PF malaria between 2013 and 2024 as shown in the figure above show 

valuable insights into the epidemiological pattern in District. The incidence data show a consistent 

trend, with a mean of 50 cases per month, with a deviation of about 6.71 cases, and positive 

skewness 0.23, indicating that while most months recorded case numbers around the mean, there 

is a peak season of January to May. The mortality data, reveal a lower mean of 4.91 deaths per 

month and a tighter spread of 2.26 deviation suggesting that deadly cases were generally fewer 
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and more stable over time. The mortality distribution is slightly skewed right = 0.45 but with 

negative kurtosis = -0.10, pointing to a flat distribution. The two variables have ranges of 34 for 

incidence and 12 for mortality, and the relatively low kurtosis and skewness in both cases indicate 

a likelihood of a normal distribution. 

 

4.2 Pre-tests /Diagnostic tests 

 

Figure 4.2.1 Time series plot of PF Malaria Incidence from 2013 to 2024 

 

 

 

 

 

 

 

 

 

 

 

 



- 34 - | P a g e  
 

Figure 4.2.2 Time Series plot of PF Malaria Mortality from 2013 to 2024 

 

 

The two-time series plots for PF Incidence and PF Mortality from 2013 to 2024 as shown above 

by figure 4.2.1 and figure 4.2.2 respectively show visible non-stationarity, as both series display 

clear seasonal patterns and long-term trends, particularly with repeated peaks during the rainy 

seasons which is usually from December to March in Mashonaland Central. The 12-month moving 

averages indicate persistent upward and downward shifts over time, suggesting that the data’s 

mean and variance change over the years, which violates the assumptions of stationarity. These 

visual showings combined with seasonal fluctuations highlighted the need for further statistical 

confirmation using tests like the Augmented Dickey-Fuller and autocorrelation (ACF) and partial 

autocorrelation function (PACF) test before proceeding with model selection. 

 

4.2.3 ADF Test for Trend Stationarity 

 

H0: The time series trends are non-stationary 

H1: The time series trends are stationary  

Figure 4.2.3 Augmented Dickey-Fuller Test Results Table 
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The research study concluded that we have failed to reject the null hypothesis that the time series 

data trends are indeed non-stationary evinced at 0.05 significance level and the data requires 

differencing. ACF and PACF plots were also used to confirm the non-stationary as suggested by 

the Augmented Dickey-Fuller hypothesis test.  

4.2.4 Autocorrelation function (ACF) and Partial autocorrelation function (PACF) 

Figure 4.2.4: Incidence’s ACF and PACF Plot for Raw Data 

 

 

The ACF plot for PF incidence shown by figure 4.2.4 above shows a slow, gradual decay, while 

the PACF exhibits a few significant spikes followed by a cutoff. This pattern is characteristic of a 

non-stationary time series.  

 

Figure 4.2.5: Mortality’s ACF and PACF Plot for Raw Data 
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Similarly, the ACF of PF mortality shows a persistent autocorrelation with slow decay and several 

significant lags, while the PACF reveals a cutoff pattern, again showing non-stationarity. The ADF 

test result also supports this, with a p-value greater than 0.05, confirming that both series are non-

stationary. Differencing will be necessary to achieve stationarity for time series modeling 

3.8.3 Time Series Differencing  

Figure 4.2.6 Differenced Time Series Data 

  

The plot of the differenced time series figures 4.2.6 above shows that the strong trends and 

seasonality that were visible before differencing have been removed, especially for mortality 

which now fluctuates closely around zero. Incidence still shows some noticeable spikes but with 

reduced magnitude and more constant variance over time. These patterns suggest that the data may 

now be closer to stationarity and formal confirmation was done through the ADF test shown on 

figure 4.2.7 and checking for remaining autocorrelations using the ACF and PACF on figure 4.3.1 

and 4.3.2. 
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 4.2.2: Augmented Dickey-Fuller Test on Differenced Data 

H0: The differenced data time series are non-stationary 

H1: The differenced data time series trends are stationary  

 

Figure 4.2.7 Augmented Dickey-Fuller Test on Differenced Data Results Table  

 

 

We conclude that the ADF test results on the differenced data suggest that both series are now 

stationary, evinced at 0.05 (5%) significance level as test statistics are less than the critical values. 

This successful transformation into stationarity means we can proceed to ARIMA model building 

following the Box-Jenkins sequence. It also sets a strong foundation for developing integrated 

artificial neural network models since stationarity helps improve the forecasting performance of 

the hybrid neural networks models by stabilizing the variance, mean and autocorrelation structures 

of the models. 

 

4.3 The Box-Jenkins Methodology  

 

The Box-Jenkins Methodology sequence was followed in developing the ARIMA models adequate 

for the epidemiological data. The sequence includes model identification, parameter estimation 

and model checking applied separately to PF incidence and PF mortality after differencing. 
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4.3.1 Model Identification 

To determine the appropriate orders of the autoregressive (AR) and moving average (MA) 

components, we examined the ACF and PACF correlograms of the differenced series for incidence 

and mortality shown by figures 4.3.1 and 4.3.2 respectively. 

Figure 4.3.1 ACF and PACF for Differ Incidence 

 

 The PACF showed significant spikes at lags 1 and 2 but cut off thereafter, while the ACF decayed 

gradually over several lags suggesting an AR = 2 component and an MA component of order 3. 

Figure 4.3.2 ACF and PACF for Differ Mortality 

 

 The ACF exhibited a noticeable spike at lag 1 before clearing out, and the PACF likewise cut off 

at lag 1 suggesting an AR =1 and MA = 1 model structure. 

This model structures insights were confirmed by an auto-arima search via the pmdarima package 

with the result presented in table 4.2.1. The pmdarima package which selected ARIMA (2,1,3) for 

incidence and ARIMA (1,1,1) for mortality as the models with the minimum AIC. 
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Table 4.3.1 Incidence and Mortality Auto-ARIMA AIC Results. 

 

4.3.2 Parameter Estimation 

Having fixed the model orders, we estimated the AR and MA coefficients, along with the constant 

drift term where they were applicable using maximum likelihood. The resulting parameter 

estimates are summarized in Table 4.3.2 for incidence and Table 4.3.3 for mortality. 

Table 4.3.2 Parameter Estimation for PF Incidence Model 
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Table 4.3.3 Parameter Estimation for PF Mortality Model 

 

All retained coefficients were highly significant (p < 0.05), confirming their contribution to 

capturing the autocorrelation structure of the differenced series. 

4.3.3 Model Diagnostic Checking 

To validate the adequacy of each fitted ARIMA model, we performed a series of residual 

diagnostics: 

4.4.1 Residual Time Series Plot 

Figure 4.4.1 Residual Time Series Plot 
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Figure 4.4.1 shows that plotted residuals over time have no remaining trend or obvious seasonality 

remains. The residual series appeared to fluctuate randomly around zero despite the spikes that 

within the range of -3 to 2 for both series. 

4.3.4 Test of Independence 

 

We examined the residual ACF correlogram as shown on figure 4.4.2 below. No autocorrelation 

spikes exceeded the 95% confidence bounds expect the one at first lag, indicating the residuals are 

effectively white noise. 

 

Figure 4.4.2 ACF Correlogram Plot 

 

 

4.3.4 Test for Normality 
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Histograms of residuals on figure 4.4.2 and a Q–Q plot on figure 4.4.3 both suggested approximate 

normality. 

 

Figure 4.4.2 Incidence on the right and mortality on left 

 

 

 

Figure 4.4.3 Q-Q Residual plot for incidence and mortality 

 

The histograms displayed a bell shaped distribution and the Q-Q plots on figure 4.4.3 above 

showed that most of the residuals lie closer to the line. The suggested residuals are approximately 

normally distributed. Formal test for normality such as the Kolmogorov Smirnov test, Anderson 
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Darling, and Ryan Joiner tests returned p-values above 0.05, failing to reject normality as shown 

on table 4.4.4 below. 

Table 4.4.4 Normality Test Results 

Test Statistic P-value 

Kolmogorov Smirnov At 0.05 0.225 

Anderson Darling At 0.05 2.295 

Ryan Joiner At 0.05 0.875 

 

These diagnostics confirmed that the ARIMA (2,1,3) and ARIMA (1,1,1) models adequately 

capture the dynamics of PF incidence and mortality respectively, with residuals that are stationary, 

uncorrelated, and normally distributed thereby meeting the key Box Jenkins conditions for 

effective forecasting models. 

 

4.3.5 ARIMA Models Validations 

Firstly, the researcher partitioned the data into a training set and a testing set, the training set 

covered from January 2013 through to December 2023 and the rest was a test set comprising 

January to December 2023. A one step ahead forecast for each month of 2024 was done using the 

finalized models, ARIMA (2.1.3) for PF incidence and ARIMA (1.1.1) for PF mortality and 

compared them against actual observed values (Table4.3.1). 
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Table 4.3.1 Testing Set 2024 District’s PF Malaria Epidemiological Data (Actual Values Vs 

ARIMA Forecasted) 

 

The ARIMA (2.1.3) model achieved an MAE of 8.68 and RMSE of 125.43 cases on the 2024 test 

set with a strong R2 of 0. 826. This indicates that the model can explain over 80% of the variations 

in PF incidence and suggests it can provide reliable forecasts for malaria case counts in the district. 

However, unlike the ARIMA (2.1.3) the ARIMA (1.1.1) model for mortality underperformed with 

a negative R2 of -0.157 which implied that the model totally failed to model death count and it 

couldn’t provide reliable forecasts although it was the best model according to AIC values. 

 

4.4 Integrated-Artificial Neural Network Hybrid Models 

 

The integrated ANN hybrid models demonstrated superior capacity in modeling both short-term 

fluctuations and long term temporal dependencies in plasmodium falciparum incidence and 

mortality. By simultaneously feeding both series of the historical data through distinct 

interconnected layers, the FFNN + LSTM hybrid effectively captured sharp and recent changes 

using feedforward layers, while the LSTM path modeled sequential dependencies and seasonal 

trends over the 12-month window. This parallel structure proved particularly effective in balancing 

immediate outbreak spikes with underlying temporal trends and patterns. 
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The addition of a 1D Convolutional layer in the CNN + LSTM + FFNN hybrid further improved 

model performance by extracting local temporal recurring three month dips before passing them 

to the LSTM layer for memory holding. This layered relationship allowed the model to detect and 

connect localized and cumulative epidemiological signals, which were then refined through 

feedforward layers into actionable forecasts. The benefit of this architecture was its ability to fuse 

pattern recognition, memory, and prediction into an interconnected learning process. The trained 

model architecture is presented in Figure 4.4.1 

4.4.1 Trained IANN Architecture 
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4.4.2 Optimal Trained Computational Dense Layers Results  

 

The CNN+LSTM+FFNN hybrid could both capture short-term variability and long-term 

seasonality. Such high performance is the best proof of the intelligent design of the model, which 

replicates the information processing capability of the human brain. The 64-filter convolutional 

layer (Conv1D) allowed the model to detect small, repetitive patterns in the 12-window sequence 

matrix. These features were input to a pooling layer and to the LSTM layer, used to learn from 

past trends and seasonal outbursts. At the same time, another input layer handled current 

information such as instant conditions. Outputs from the two branches were combined and input 

to fully connected layers to generate the output prediction. The entire model had 38,562 trainable 

parameters, which was complicated enough to be learned from the data but not too large to overfit.  

 

3.8.4 Model Training and Testing 
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The integrated artificial neural network (IANN) models were trained using normalized PF 

incidence and PF mortality data from 2013 to 2023, with 2024 set out for testing. Supervised 

learning samples were generated using a sliding 12-month input window to predict the next 

month’s incidence and mortality values. After training, forecasts for the 12 months of 2024 were 

generated and compared against the actual observed values. The forecasting results were 

summarized in a table showing the models' ability to track real epidemiological trends across the 

test period. 

Table 4.3.2 Neural Models Validation 

 

The performance of each model was evaluated using three statistical metrics which are the mean 

absolute error, root mean squared error, and the coefficient of determination. On the 2024 test set, 

the FFNN+LSTM hybrid model produced an MAE of 6.71, an RMSE of 116.93, and an R² value 

of 0.91, suggesting strong alignment between predicted and actual values. The 

CNN+LSTM+FFNN model achieved slightly better results, with an MAE of 5.43, an RMSE of 

96.85, and an R² of 0.94. These results indicate that incorporating both convolutional and recurrent 

layers contributed to improved forecasting performance when compared to the simpler 

FFNN+LSTM model. 

 

3.9 Models Comparison 
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The effectiveness of both traditional time series and computational intelligence approaches, the 

ARIMA, FFNN+LSTM hybrid, and CNN+LSTM+FFNN hybrid models was evaluated by key 

performance metrics such as the mean absolute error (MAE), root squared error (RMSE), and R2 

score. While ARIMA showed good forecasting capability in PF incidence although it was very 

weak in modeling PF mortality, the FFNN+LSTM hybrid showed improvements with the ability 

to model both, and the CNN+LSTM+FFNN model consistently outperformed both, as it achieved 

the lowest errors and highest variance explanation. These results showed the significant advantage 

of deep learning-based hybrids in modeling complex, nonlinear plasmodium falciparum 

epidemiological trends. 

These results are similar to the findings of Wang and LI (2020) and consistent with those of work 

by Zhang et al., (2021) who both independently noted that integrating convolutional to extract 

local patterns with LSTM memory and FFNN predictions layers yields better models compared to 

ARIMA and in some case single architecture ANN. 

 

3.10 Best Model Selection 

 

Based on the model validation results, the CNN+LSTM+FFNN hybrid was selected as the best 

performing model, having delivered the best accuracy and strength across all evaluation metrics. 

Therefore, this integrated artificial neural network hybrid model was employed to generate 

monthly forecasts of PF malaria incidence and mortality from January 2025 to December 2030 

due to its ability to forecast future trends of plasmodium falciparum malaria with such a high 

degree of confidence rather than traditional time series models.  

 

4.7 2025 to 2030 Forecasting 

 

TABLE 4.7.1: 1D CNN+LSTM+FFNN Forecasted Monthly Plasmodium Malaria Incidence and 

Mortality 2025 – 2030 
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4.8 Discussion of Findings 

 

The forecasts by the CNN+LSTM+FFNN hybrid model show that there is a seasonal cycle on the 

plasmodium falciparum incidence with peaks every year between February and April which 

mirrors the rainy-season spikes trends documented by Kumar et al., (2014). For this research, it 

means the hybrid model had successfully learned the district annual transmission trend. The area 

chart on figure 4.8.3 further supports that, even incidence levels decline over time from the 

forecasted 1824 cases in 2025 to 1703 by 2030 with seasonal peaks remaining marked each year. 

 

Figure 4.8.1 CNN+LSTM+FFNN Time Series Plot of Forecasted Monthly Plasmodium Malaria 

Incidence  
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Figure 4.8.2 CNN+LSTM+FFNN Time Series Plot of Forecasted Monthly Plasmodium Malaria 

Mortality 

 

 

On the other hand, mortality forecasts show a flatter trend on monthly deaths with a minimum of 

2 and a maximum of 6 and a gradual downward drop from the annual total of 46 deaths expected 

in 2025 to 33 in 2030. This decline aligns with the research work of Alhassan et al., (2017) on 

improving case management in northern Ghana which further suggested that, even if malaria case 

numbers are seasonally volatile there is need for enhanced treatment and prevention efforts to 

reduce the risk. 

Figure 4.8.3 Area Chart of Forecasted PF Incidence and Mortality (2025-230) 
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4.8.1 Statistical and Predictive Insights to MoHCC, DHA and DHO 

 

Figure 4.8.4 Horizontal bar chart of Forecasted PF Incidence and Mortality (2025-230) 

 

 

The horizontal bar chart shown by figure 4.8.4 illustrates that, even by 2030 the Mt Darwin district 

is expected to face over 1700 malaria cases annually underlining the need for sustainable control 

measures to be done by MoHCC and DHA while mortality is expected to fall below 40 deaths per 

year. The MoHCC and DHA should consider action for timely distribution of mosquito nets, 

having a reliable adequate medicine supply chain of antimalarial drugs from NatPharm, and 

malaria health campaigns each pre-rainy season. 
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Figure 4.8.5 Forecasted Plasmodium Falciparum Heat-map Charts (2025-2030) 

 

 

 

 

The time series heatmaps of the forecasted Plasmodium falciparum incidence and mortality shown 

by the figure above offer a visual summary of seasonal malaria patterns from 2025 to 2030. These 

heatmaps highlight months of consistently high transmission, especially from February to April of 

2025,2026 and 2027. This will allow health authorities to forestall pressure points in the healthcare 

system. For decision like DHA, MoHCC, and NatPharm, this visualization shows complex 

forecasts into actionable windows for intervention whether it's scaling up diagnostic efforts, 

allocating frontline health workers, and distribution of medicines and preventive supplies. 
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4.9 Chapter Summary  

 

This chapter outlined data presentation, analysis, and discussion of results of the forecast on 

plasmodium falciparum malaria in the district of Mt Darwin. The best performing model which 

was found to be the CNN+LSTM+FFNN hybrid model was utilized. Visualizations which were 

done in this chapter provides health predictive insights to the DHA, MoHCC and the National 

pharmaceuticals company (Natpharm). The following chapter will be on the research 

recommendations and conclusion.  
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CHAPTER FIVE 

FINDINGS, CONCLUSIONS AND RECOMMENDATIONS 

 

5.0 Introduction 

 

This chapter provides a comprehensive summary of the research study focused on time series 

forecasting of Plasmodium falciparum malaria epidemics in Mt. Darwin District. The study 

utilized an integrated artificial neural network hybrid modeling approach to come up with accurate 

epidemic predictions. In addition to highlighting the key findings, the chapter presents practical 

recommendations for the district health authorities, the Ministry of Health and Child Care 

(MoHCC), and other interested stakeholders. It also outlines directions for future research, all 

aimed at enhancing malaria surveillance, preparedness, and response strategies. 

 

5.1 Summary of Study 

 

This research study focused on forecasting Plasmodium falciparum malaria epidemics in Mt. 

Darwin District using an integrated artificial neural network (IANN) hybrid modeling approach. 

The study compared the effectiveness of traditional time series forecasting techniques with 

modern, data driven computational intelligence models in predicting both malaria incidence and 

mortality. While traditional models such as ARIMA were initially applied specifically ARIMA 

(2,1,3) for incidence and ARIMA (1,1,1) for mortality they demonstrated clear limitations. 

Although ARIMA models were able to reflect general trends and seasonal peaks commonly 

observed during the rainy season, typically from December to April, they struggled to capture 

sudden fluctuations in case numbers and consistently underperformed in forecasting months with 

low mortality. These shortcomings were evident in their relatively poor performance evaluation 

results compared to those of the neural network based hybrid models. 

In contrast, the introduction of the IANN hybrid framework offered a stronger and adaptive 

approach. By integrating convolutional layers to detect local outbreak signals, recurrent layers to 

account for time dependent behavior, and fully connected layers for decision mapping, the hybrid 

model significantly improved forecast accuracy to nearly 94%. This was especially important for 

anticipating sharp increases in cases during peak transmission periods and for identifying gradual 

declines in mortality over the years. The enhanced performance of the IANN hybrid not only 

addressed the weaknesses of traditional models but also provided more reliable forecasts that can 

support proactive health planning and early intervention of PF malaria in Mt Darwin district. 
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The time series forecast of Plasmodium falciparum malaria incidence and mortality extended from 

January 2025 through December 2030, using the CNN+LSTM+FFNN hybrid model identified as 

the most effective among all models tested in this study. This advanced model outperformed 

traditional techniques by successfully capturing both short-term fluctuations and long-term 

patterns in PF malaria epidemic trends and patterns. Meaningful visualizations in chapter 4 played 

a crucial role in transforming the model’s numerical outputs into clear and actionable insights. The 

heatmap plot, a color graded, month by month grid spanning the forecast horizon enabled a visual 

risk assessment of the forecasted situation, highlighting high risk periods in a way that allowed the 

district healthy to easily identify when and where interventions would be most needed. 

The forecast exposed that while both PF malaria incidence and mortality are projected to decline 

gradually over the next 6 coming years a positive indication of progress in malaria control, the 

regular seasonal surges, particularly during the rainy months, are expected to continue. These 

findings underscore the need for sustained vigilance and timely interventions despite the overall 

downward trend. Ultimately, the shift from traditional ARIMA models to a refined data driven 

computational intelligence hybrid approach proved crucial in capturing the complicated dynamics 

of malaria epidemic in Zimbabwe’s rural settings. 

 

5.2 Conclusions 
 

This research study concludes that integrated artificial neural network modeling offers a superior 

approach to time series forecasting of PF malaria epidemic trends and pattern in Mt Darwin 

District. It also acts a baseline for future research in rural communities especially where health 

systems face resource limitations and need to act on early warnings. This approach also aligns with 

the national and global goals on malaria elimination, reinforcing the need to integrate advanced 

computational intelligence methods and data-driven discussions into routine malaria epidemic 

surveillance and planning.    

 

5.4 Recommendations 

 

In light of the study’s findings, it is recommended that the district health authorities, the Ministry 

of Health and Child Care, and other relevant stakeholders should pay special attention to the 

December to April rainy season, when malaria transmission peaks, ensuring adequate preparation 

through in advance medical supplies in strategic collaboration with NatPharm, enhanced vector 

control, and intensified public health campaigns. Moreover, investment in local data infrastructure 

including training of health personnel in digital health informatics systems will be vital to 

sustaining forecasting and future research studies. By embracing these recommendations, the 
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district and national health systems can significantly strengthen their preparedness and response 

capacity, contributing meaningfully to WHO and Zimbabwe’s broader malaria elimination goals. 

 

5.5 Areas for Further Research 

 

Future research studies should expand this modeling framework to other districts and provinces 

and include additional environmental and socio economic variables to improve the power of the 

model. Moreover, comparative research involving other machine learning architectures such as 

random forest could further enhance overall modeling and forecasting capabilities. 
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 ARIMA Python Code  

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import warnings 

import statsmodels.api as sm 

from statsmodels.tsa.arima.model import ARIMA 

from itertools import product 

warnings.filterwarnings("ignore") 

df = pd.read_csv("/content/drive/MyDrive/malaria_data.csv", parse_dates=['Date']) 

df.set_index('Date', inplace=True) 

train_df = df.loc['2013-01-01':'2023-12-31'] 

incidence = train_df['Pf_Incidence'] 

mortality = train_df['Pf_Mortality'] 

# ================================ 

def arima_grid_search(series, label='Series', p_range=range(0, 4), d_range=range(0, 2), 

q_range=range(0, 4)): 

    results = [] 

    for order in product(p_range, d_range, q_range): 

        try: 

            model = ARIMA(series, order=order).fit() 

            results.append((order, model.aic)) 

        except: 

            continue 

 

   results_df = pd.DataFrame(results, columns=["ARIMA_order", "AIC"]).sort_values(by='AIC') 

    best_model = results_df.iloc[0] 

 

    print(f"\n🔍 Best ARIMA for {label}: {best_model['ARIMA_order']} with AIC = 

{best_model['AIC']:.2f}") 

    return results_df, best_model 

 

# ================================ 

 

inc_results, inc_best = arima_grid_search(incidence, label="Incidence") 

mort_results, mort_best = arima_grid_search(mortality, label="Mortality") 

# ================================ 

 

print("\n📊 ARIMA Model AIC Results - Incidence") 

print(inc_results.head(10)) 

 

print("\n📊 ARIMA Model AIC Results - Mortality") 

print(mort_results.head(10)) 

 

# ================================ 

 

final_inc_model = ARIMA(incidence, order=inc_best['ARIMA_order']).fit() 

final_mort_model = ARIMA(mortality, order=mort_best['ARIMA_order']).fit() 

 

# Optional: Plot residuals 

final_inc_model.plot_diagnostics(figsize=(10, 6)) 

plt.suptitle("Diagnostics - Best Incidence ARIMA") 

plt.show() 

 

final_mort_model.plot_diagnostics(figsize=(10, 6)) 

plt.suptitle("Diagnostics - Best Mortality ARIMA") 

plt.show() 
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# ARIMA Model Evaluation and Forecasting for Malaria Incidence and 

Mortality 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.metrics import mean_absolute_error, mean_squared_error, 

r2_score 

import warnings 

from statsmodels.tsa.arima.model import ARIMA 

 

warnings.filterwarnings("ignore") 

 

df = pd.read_csv("/content/drive/MyDrive/malaria_data.csv", 

parse_dates=['Date']) 

df.set_index('Date', inplace=True) 

df = df.sort_index() 

 

# Split into training (2013-2023) and test (2024) 

train = df.loc['2013-01-01':'2023-12-31'] 

test  = df.loc['2024-01-01':'2024-12-31'] 

 

model_inc = ARIMA(train['Pf_Incidence'], order=(2,1,3)).fit() 

model_mort= ARIMA(train['Pf_Mortality'], order=(1,1,1)).fit() 

 

dates_2024 = test.index 

fore_inc_2024 = model_inc.forecast(steps=12) 

fore_inc_2024.index = dates_2024 

fore_mort_2024 = model_mort.forecast(steps=12) 

fore_mort_2024.index = dates_2024 

 

df_2024 = test.copy() 

df_2024['Inc_Forecast']  = fore_inc_2024 

df_2024['Mort_Forecast'] = fore_mort_2024 

metrics = { 

    'Metric': ['MAE','RMSE','R2'], 

    'Incidence': [ 

        mean_absolute_error(df_2024['Pf_Incidence'], 

df_2024['Inc_Forecast']), 

        mean_squared_error(df_2024['Pf_Incidence'], 

df_2024['Inc_Forecast']), #,squared=False), 

        r2_score(df_2024['Pf_Incidence'], df_2024['Inc_Forecast']) 

    ], 

    'Mortality': [ 

        mean_absolute_error(df_2024['Pf_Mortality'], 

df_2024['Mort_Forecast']), 
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        mean_squared_error(df_2024['Pf_Mortality'], 

df_2024['Mort_Forecast']),), 

        r2_score(df_2024['Pf_Mortality'], df_2024['Mort_Forecast']) 

    ] 

} 

metrics_df = pd.DataFrame(metrics) 

print("\nARIMA 2024 Performance Metrics:") 

print(metrics_df) 

 

# Plot Actual vs Forecast (Monthly) 

plt.figure(figsize=(12,6)) 

plt.plot(df_2024.index, df_2024['Pf_Incidence'], label='Actual Incidence') 

plt.plot(df_2024.index, df_2024['Inc_Forecast'], label='Forecast 

Incidence') 

plt.plot(df_2024.index, df_2024['Pf_Mortality'], label='Actual Mortality') 

plt.plot(df_2024.index, df_2024['Mort_Forecast'], label='Forecast 

Mortality') 

plt.title('ARIMA Model: Actual vs Forecast (2024)') 

plt.xlabel('Month') 

plt.ylabel('Count') 

plt.legend() 

plt.grid(True) 

plt.tight_layout() 

plt.show() 

fore_mort_2024.index = dates_2024 

 

IANN Python 

# CNN + LSTM + FFNN Hybrid Model for Malaria Incidence and Mortality 

Forecasting 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.metrics import mean_squared_error, mean_absolute_error, 

r2_score 

from tensorflow.keras.models import Model 

from tensorflow.keras.layers import Input, Dense, LSTM, Conv1D, 

MaxPooling1D, Flatten, Concatenate 

from tensorflow.keras.callbacks import EarlyStopping 

import datetime 

df = pd.read_csv("/content/drive/MyDrive/malaria_data.csv", 

parse_dates=['Date']) 

df.set_index('Date', inplace=True) 

df = df.sort_index() 
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df = df.loc['2013-01':'2024-12'] 

 

# Normalize features 

scaler = MinMaxScaler() 

df_scaled = pd.DataFrame(scaler.fit_transform(df), columns=df.columns, 

index=df.index) 

def create_dual_inputs(data, seq_length): 

    X_seq, X_ffnn, y = [], [], [] 

    for i in range(len(data) - seq_length): 

        X_seq.append(data[i:i+seq_length]) 

        X_ffnn.append(data[i+seq_length - 1])  

        y.append(data[i+seq_length]) 

    return np.array(X_seq), np.array(X_ffnn), np.array(y) 

 

sequence_length = 12 

X_seq, X_ffnn, y = create_dual_inputs(df_scaled.values, sequence_length) 

 

train_end_loc = df_scaled.index.get_loc('2023-12') 

 

if isinstance(train_end_loc, slice):   

    train_end = train_end_loc.stop -1   

else:  

    train_end = train_end_loc 

 

train_end_index = 

df_scaled.index.get_indexer([df_scaled.index[train_end]])[0]  

X_seq_train, X_seq_test = X_seq[:train_end_index - sequence_length + 1], 

X_seq[train_end_index - sequence_length + 1:] 

X_ffnn_train, X_ffnn_test = X_ffnn[:train_end_index - sequence_length + 

1], X_ffnn[train_end_index - sequence_length + 1:] 

y_train, y_test = y[:train_end_index - sequence_length + 1], 

y[train_end_index - sequence_length + 1:] 

 

# ------------------ Model Architecture ------------------ # 

 

# CNN + LSTM branch 

input_seq = Input(shape=(sequence_length, 2)) 

x = Conv1D(filters=64, kernel_size=5, activation='relu')(input_seq) 

x = MaxPooling1D(pool_size=2)(x) 

x = LSTM(64, return_sequences=False)(x) 

x = Dense(32, activation='relu')(x) 

 

# FFNN branch 

input_ffnn = Input(shape=(2,)) 

y_ff = Dense(32, activation='relu')(input_ffnn) 

y_ff = Dense(16, activation='relu')(y_ff) 
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# Merge 

merged = Concatenate()([x, y_ff]) 

z = Dense(32, activation='relu')(merged) 

z = Dense(16, activation='relu')(z) 

output = Dense(2)(z) 

 

model = Model(inputs=[input_seq, input_ffnn], outputs=output) 

model.compile(optimizer='adam', loss='mse') 

model.summary() 

 

# ------------------ Model Training ------------------ # 

early_stop = EarlyStopping(monitor='val_loss', patience=10, 

restore_best_weights=True) 

model.fit([X_seq_train, X_ffnn_train], y_train, epochs=500, batch_size=16, 

validation_split=0.2, callbacks=[early_stop], verbose=1) 

 

# ------------------ Model Testing ------------------ # 

y_pred = model.predict([X_seq_test, X_ffnn_test]) 

y_pred_inverse = 

scaler.inverse_transform(np.hstack((np.zeros((len(y_pred), df.shape[1] - 

2)), y_pred)))[:, -2:] 

y_test_inverse = 

scaler.inverse_transform(np.hstack((np.zeros((len(y_test), df.shape[1] - 

2)), y_test)))[:, -2:] 

mae = mean_absolute_error(y_test_inverse, y_pred_inverse) 

rmse = mean_squared_error(y_test_inverse, y_pred_inverse) #, 

r2 = r2_score(y_test_inverse, y_pred_inverse) 

 

print("\nModel Evaluation (2024):") 

print(f"MAE: {mae:.2f}") 

print(f"RMSE: {rmse:.2f}") 

print(f"R^2 Score: {r2:.2f}") 

dates_2024 = df.index[-12:] 

plt.figure(figsize=(12, 6)) 

plt.plot(dates_2024, y_test_inverse[:, 0], label='Actual Incidence') 

plt.plot(dates_2024, y_pred_inverse[:, 0], label='Predicted Incidence') 

plt.plot(dates_2024, y_test_inverse[:, 1], label='Actual Mortality') 

plt.plot(dates_2024, y_pred_inverse[:, 1], label='Predicted Mortality') 

plt.legend() 

plt.title("Actual vs Predicted Malaria Incidence and Mortality (2024)") 

plt.xlabel("Month") 

plt.ylabel("Count") 

plt.grid(True) 

plt.tight_layout() 

plt.show() 
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# ------------------ Forecasting: 2025–2030 ------------------ # 

def forecast_future(model, history, steps): 

    forecast = [] 

    current_seq = history.copy() 

    for _ in range(steps): 

        ffnn_input = current_seq[-1]   

        pred = model.predict([current_seq[np.newaxis, :, :], 

ffnn_input[np.newaxis, :]])[0] 

        forecast.append(pred) 

        current_seq = np.vstack([current_seq[1:], pred]) 

    return np.array(forecast) 

 

last_seq = df_scaled.values[-12:] 

future_preds = forecast_future(model, last_seq, 72) 

future_padded = np.hstack((np.zeros((future_preds.shape[0], df.shape[1] - 

2)), future_preds)) 

future_unscaled = scaler.inverse_transform(future_padded)[:, -2:] 

 

future_dates = pd.date_range(start='2025-01-01', periods=72, freq='MS') 

future_df = pd.DataFrame(future_unscaled, 

columns=['Pf_Incidence_Forecast', 'Pf_Mortality_Forecast'], 

index=future_dates) 

future_df.plot(figsize=(12, 6), title='Forecasted Monthly Malaria 

Incidence and Mortality (2025–2030)', grid=True) 

plt.ylabel("Count") 

plt.tight_layout() 

plt.show() 

 

yearly_summary = future_df.resample('Y').sum() 

print("\nYearly Forecast Summary (2025–2030):") 

print(yearly_summary) 

 

yearly_summary.plot(kind='bar', figsize=(10, 5), title='Yearly Forecasted 

Incidence and Mortality', rot=45, grid=True) 

plt.ylabel("Total Count") 

plt.tight_layout() 

plt.show() 

 

DATA SOURCE LINK 

 

https://apps.mohcc.gov.zw/impilo-dhis/dhis-web-commons/security/login.action 
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