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ABSTRACT

Youth mortality remains a critical public health issue in Zimbabwe, particularly for youth aged
0-24 years. Accurate mortality forecasting is vital for informing evidence-based health
interventions and policies. In this research, there is a comparative evaluation between two hybrid
models for mortality forecasting: the hybrid Lee-Carter model with Auto-Regressive Integrated
Moving Average (LC-ARIMA) and the hybrid Lee-Carter model with Random Forest regression
(LC-RF). Mortality rate data from 1990-2011 was obtained from UNICEF and Singular Value
Decomposition was used to estimate parameters for the model. Estimates for the period 2012-
2022 were generated by utilizing ARIMA and Random Forest techniques to estimate the time-
varying mortality index (k,). Quantitative evaluation of the models was performed using error
metrics Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared
Percentage Error (RMSPE). Results show that the LC-RF model performed better in projecting
mortality for age brackets 0—4, 5-9, and 20-24 years, where it effectively captured non-linear
trends. Conversely, LC-ARIMA fared better in the 10-14 and 15-19 age brackets. The results
demonstrate the value of hybrid model approaches and affirm the necessity to apply suitable
models to the underlying trends in the data. This study contributes to the body of literature by
applying hybrid mortality models to a relatively understudied age cohort in Zimbabwe and offers
results relevant for public health planning, actuarial purposes, and future mortality research. For
areas of further studies, the researcher could use other predictors such as socioeconomic or
health system predictors. Other machine learning algorithms such as LSTM and XGBoost can be

used.
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CHAPTER 1: INTRODUCTION

1.0 Introduction

Youth mortality in Zimbabwe for the ages 0 to 24 is a serious public health challenge. This age
group is affected by socioeconomic issues such as poverty, a weak health infrastructure system
and limited access to health care (Levy and Sidel, 2009). The need to address youth mortality is
not only important for individual and community well-being but also in shaping effective health

policies and interventions.

Precise modeling and forecasting of mortality rates among youths is important in devising specific
health policies and interventions. Precise forecasting will also provide indications on health
policies that might be implemented to reduce mortalities, including the needs of the different age
groups comprising the youth. This dissertation explores and compares two advanced techniques in
the forecast of mortality rates among the youths: the Lee-Carter-ARIMA (LC-ARIMA) hybrid
model and Lee-Carter-Random Forest (LC-RF). The study uses data-driven approaches to enhance
predictive accuracy and inform evidence-based policy decisions.

The first chapter of the dissertation is an introduction, it details the background of the problem,
presents a complete problem statement and states the objectives of the study. It states the
research questions and describes assumptions and limitations of the study. Definitions of the

main terms are given for better understanding.

In chapter 2, the literature on the Lee-Carter model and Random Forest approaches is thoroughly
reviewed. The application of these models in mortality prediction and their relationships to youth
mortality are also looked at. Chapter 3 discusses the datasets and analytical methods used to
compare the two models as well as the research approach employed in this work. Chapter 4
discusses the analysis and results of the study. Chapter 5 summarizes the findings of this
dissertation, discusses the implications and provides recommendations for further research.
Using this systematic design, the present study is intended to help model and forecast mortality

rates of Zimbabwean youths.
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1.1 Background of the problem

Global Perspective

Youth mortality is considered a critical public health challenge worldwide, with the major burden
experienced by low- and middle-income countries. According to UNICEF, in 2019 there were
approximately 5.2 million deaths among children below the age of five, with the highest proportion
from sub-Saharan Africa (UNICEF, 2020). Poverty and inadequate healthcare systems are some
of the factors that contribute to preventable causes of death, such as malnutrition, infectious
diseases and injuries (Liu et al, 2016). Sustainable Development Goal (SDG) 3 strives to minimize
under-five mortality to at most 25 deaths per 1,000 live births by 2030 (United Nations, 2015).

Continental Perspective

Deaths are high among youths on the African continent compared to the rest of the world. Over
50% of the global annual deaths of children and youths are due to diseases such as HIV/AIDS,
malaria and tuberculosis, and complications from maternal and neonatal health occur in sub-
Saharan Africa alone (World Health Organization 2021). Death rates are decreasing slowly
because health facilities do not have enough resources, and most people have limited access to
preventive measures. However, new forecasting techniques and statistical models are being used

to distribute resources and to guide interventions.
National Perspective

In Zimbabwe, youth mortality mirrors the continental trends, worsened by national challenges of
economic instability, political tensions and strain on the healthcare system (Mavhandu-Mudzusi
et al, 2018). For example, the infant mortality rate was recorded at 69 deaths per 1,000 born alive
according to the Demographic and Health Survey that was done in 2015 in Zimbabwe (ZIMSTAT,
2016). There are many factors that are responsible for high youth mortality. Some of them are the
non-availability of proper healthcare services, high prevalence of HIV/AIDS, and poor maternal
healthcare (Chikanda & Matanda, 2020). Precise modelling of mortality trends is needed for public

health policy and services impact.

Direction Taken by Previous Studies

12



There have been many studies done on mortality trends in Zimbabwe. For example, (Chikanda
and Matanda, 2020) studied the effectiveness of health policies to avert juvenile mortality and
emphasized the need for integrated healthcare services targeting adolescents. They also
discussed the contribution of HIVV/AIDS to youth mortality and demanded increased access to
antiretroviral therapy and education. Since its creation in 1992, the Lee-Carter model has been
well known for its ability to predict mortality. This is because it can accurately show the long-
term trajectory of age specific death rates. In Zimbabwe, it was combined with ARCH models to
predict death rates for individuals aged 0 to 85 (Taruvinga et al, 2017). Recent works have
combined the Lee-Carter framework with machine learning methods such as Random Forests
and Acrtificial Neural Networks forming hybrid models. This greatly improved predictive
accuracy (Hong et al, 2021). Random Forests have been found quite promising in capturing
nonlinear patterns and improving mortality forecasting accuracy across a wide range of settings
(Czado et al, 2021).

Despite these developments, there are still some gaps in the modeling of mortality for youths
aged 0 to 24 years in Zimbabwe. This dissertation compares the predictive performance of the
Lee-Carter model and Random Forests in forecasting the rates of youth mortality. Through such
advanced methods, the study will be able to give recommendations useful in the design of

targeted interventions and health policies.

1.2 Statement of the problem

Youth mortality is a public health concern in Zimbabwe. Accurate death rate prediction is
essential for making informed policy decisions and implementing effective health interventions.
Conventional methods such as the Lee—Carter and ARIMA models may not adequately capture
the non-linear relationships that occasionally show up in mortality statistics. Machine learning
algorithms like Random Forest are more versatile but they lack the interpretability of traditional
statistical models. This study aims to narrow the gap by comparing the accuracy of two hybrid
models, Lee-Carter with ARIMA and Lee—Carter with Random Forest in modelling and
forecasting mortality rates. Not only will this help improve health interventions for young
people, but it would assist actuaries and insurers to develop life and health insurance for the

youth.
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1.3 Research Objectives

To better characterize and forecast mortality patterns in young populations of Zimbabwe, this

study aims to accomplish the following:

1.

2.

To model overall mortality rates for ages 0 to 24 in Zimbabwe for the years 1990 to 2011
using LC-ARIMA and LC-Random Forest hybrid models.

To evaluate and compare the accuracy of LC-ARIMA and LC-Random Forest hybrid
models in forecasting mortality for the target age groups using quantitative performance

metrics for the years.
To examine age specific mortality forecast results and make inferences to guide targeted

public health interventions in Zimbabwe.

1.4 Research questions

To fill the knowledge gap existing in mortality rate prediction in young populations, this study

will attempt to answer the following questions:

1. How effectively can the LC-ARIMA and LC-Random Forest hybrid models be used to

model overall mortality rates for Zimbabwean youths aged 0 to 24 during the period 1990
to 20117

Which hybrid modeling approach, LC-ARIMA or LC-Random Forest, provides more
accurate forecasts of mortality rates for youths aged 0 to 24 in Zimbabwe?

What are the public health implications of the age specific mortality projections
generated by the LC-ARIMA and LC-Random Forest hybrid models for Zimbabwean
youth?

1.5 Delimitations of the study

The study focuses solely on youth aged 0-24 years in Zimbabwe excluding other age categories.

The study will be confined to Zimbabwe, which excludes regional and global trends in mortality

with a view to providing specific insights for that country. Alternative machine learning

methods, including LSTMs and support vector machines are not considered in this analysis. This
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study looks only into overall mortality rates without showing subgroup analyses, for instance by
cause of death, by gender, or by region. Forecasting accuracy is emphasized, instead of an in-
depth exploration of the causal factors. Although the findings aim to inform health policy, the
study does not address the implementation of interventions or evaluate existing public health

programs.

1.6 Assumptions of the study

The mortality data for Zimbabwean youths aged 0 to 24 from 1990 to 2022 is accurate and
reliable. It reflects true trends in mortality. It is assumed that the time-varying mortality index ki
(kappa) of the Lee-Carter model is stationary enough to allow ARIMA models to provide valid
forecasts after differencing. The Lee-Carter framework is assumed to be suitable for modeling
and forecasting mortality rates in Zimbabwe, including its ability to capture age-specific
mortality trends. It was assumed that the hybrid models of the LC-ARIMA and LC-Random
Forest were comparably capable of handling the given data and generating meaningful forecasts

about mortality rates.

1.7 Limitations of the study

The models assume that the future mortality will be predicted by the past mortality trend
represented through k:. This hypothesis may not consider the effects of unforeseen disruptions,
like pandemics, economic crisis or major healthcare intervention. The model does not separate
death by causes it only considers overall mortality. Age-specific parameters such as alpha («)

and beta (f) remain constant during the period under study.

1.8 Definition of terms

Mortality Rate

The mortality rate refers to how often deaths occur in a specific population over a given period,
typically expressed per 1000 or 100 000 people. It forms one of the critical indicators of public
health and demographic features. (World Health Organization, 2021).
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Lee-Carter Model

The Lee-Carter model captures how age specific mortality rates change over time by applying
singular value decomposition to estimate parameters that reflect long term mortality trends
(Pedroza, 2013).

Random Forest

Random forest is a machine learning algorithm that forms numerous decision trees while training

and then joins together their outputs in efforts to improve predictive accuracy (Breiman, 2001).

Forecasting

Forecasting is a method of predicting future occurrences or evolutions of the situation which is
founded on the statistical analysis of historical data. It is widely applied to the fields of
economics, meteorology and public health for prediction of future values. (Hyndman
Athanasopoulos, 2018).

1.9 Summary

This chapter has pointed out the significance of modeling and forecasting mortality rates of
youths in Zimbabwe. This allows implementation of public health policies and interventions that
are evidence-based. The research objectives and questions were formulated to guide the
comparative analysis of the LC-ARIMA and LC-RF hybrid models in addressing this challenge.
This chapter forms a basis for the next chapter that will undertake a broad review of the relevant

existing literature and theoretical frameworks.
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CHAPTER 2: LITERATURE REVIEW

2.0 Introduction

This chapter aims to review both theoretical and empirical literature, which are relevant to
modeling and forecasting mortality rates among the youth in Zimbabwe. The study will
investigate various relevant theories and frameworks. Theoretical literature will focus on Lee-
Carter model and Random Forest techniques which are of importance in this study. The

empirical literature review will present findings from previous studies.

Gaps in relevant literature will be identified, which are the lack of comparative studies on
mortality forecasting for youths aged 0 to 24 in Zimbabwe and integration of Lee- Carter with
ARIMA and Random forests to forecast mortality rates in Zimbabwe. A conceptual framework

that outlines the methodological approach for addressing these gaps will also be introduced.

The chapter is as follows: Section 2.1 presents the theoretical literature relevant to this study.
Section 2.2 presents empirical studies that support and oppose mortality modeling and those with
mixed findings. Section 2.3 identifies the research gaps this study tries to fill. Finally, section 2.4
shows the proposed conceptual framework and Section 2.5 concludes the chapter by

summarizing the key points.

2.1 Theoretical Literature

This section deals with the theories and mathematical models that are used for this research.
These are namely the Lee-Carter model and hybridization of the same with ARIMA and Random
Forest. These methods form the theoretical framework of the modeling and forecasting of

Zimbabwean youth mortality.

The Lee-Carter model

Lee and Carter first came up with the Lee-Carter model in 1992. It has widespread use in
demography to model and predict mortality rates. The model decomposes the log of age-specific

mortality as
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Inmgn = ay + Byke + €

where a, represents the average age-specific log mortality, 5, the sensitivity of mortality to

changes in k; and € the error term (Basellini et al, 2022).

Parameter estimation for the Lee-Carter model is done using the Singular VValue Decomposition

(SVD) technique (Taruvinga et al 2017). The parameters a,, 5, and k, are identified under the

constraints Yk, =0 and Y ,=1 to ensure identifiability (Basellini et al, 2022).

let M be the matrix of log-transformed mortality rates, where:

mp1 Myp .. My
M= m2;1 mzg2.. mZ;t

My1 My My,

Using SVD, the matrix M can be decomposedas: M = UXVT

My, My My U1 Uy, Ugg 6, 0. 07[V11

mzi1 Mgz, Mzl |U21  U22. Ut 0 d2.. 0f]|v2a

My My My Uyx,1 u Us,t 0 0 6,1[Vxa
Where:

U: The left singular matrix (x X x), containing the left singular vectors.

V12 ..
V2,2..

Uyt
V2,t

¥: A diagonal matrix (x x t) of singular values, which represents the magnitude of the data’s

variance along the principal components.

VT: The transpose of the right singular matrix (t x t), containing the right singular vectors.

The sensitivity of mortality at age x (f,) and the time varying index t (k, ) are obtained by

applying the following equations.

k=061 X (V11 V21 - Vp1)
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We assume the residuals € are independent and identically distributed with constant variance.
Residuals could show age-dependent autocorrelation or heteroscedasticity. These restrictions

may have an impact on model fit, particularly for age groups with erratic trends or sparse data
(Cairns et al, 2009).

The Lee-Carter model has been widely used because it is somewhat simple. Mortality forecasts
are generated using a single time index. This allows for probabilistic prediction for all mortality
metrics, and it relies entirely on extrapolation avoiding subjective expert opinions or external
input (Bassellini, 2022).

The model’s dependence on extrapolation has advantages and disadvantages. It makes
predictions reproducible, and data driven. However, it might not be as good at capturing sudden
changes in the population or nonlinear transitions. This includes those brought on by wars and
epidemics (Villegas et al, 2018).

Actuaries and insurers use this model for pricing pensions, life insurance and annuities. It is also
suited for risk assessment and solvency estimation in financial applications due to its capacity to

generate long range forecasts with uncertainty bands (Richards et al, 2007)

ARIMA (Auto-Regressive Integrated Moving Average)

ARIMA is a time series model that can be used for forecasting. It combines autoregression (AR),
differencing (1), and moving averages (MA). It models temporal changes in mortality rates using
past values and residuals. The k; index, after being estimated through a two-stage process, can
be forecasted using ARIMA. k, follows a random walk model with a drift component
(Haberman and Renshaw, 2011). The drift component captures the average annual change in
mortality. A negative drift shows a decline in mortality and a positive drift shows an increase in

mortality. This is mathematically expressed as:
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Recent advancements have led to the hybridization of the Lee-Carter model with other machine
learning models like Neural Networks and Random Forest. The ARIMA component is replaced
with a more flexible non-linear machine learning model (Hong et al, 2021). The mortality index
(k:) which is usually forecasted using ARIMA is then forecasted using machine learning. This
study will combine the Lee-Carter model and the Random Forest regressor to form a hybrid

model.

Random Forest

Random Forest is a machine learning approach that develops several decision trees to improve a
target variable's prediction accuracy (Breiman, 2001). The Law of Large Numbers prevents the
model from overfitting and makes it robust to noise. For variance reduction and to prevent
overfitting, the model aggregates predictions across several trees. By combining the multiple
decision trees, Random Forest identifies the nonlinear associations and higher-order interactions
within mortality data. Random Forest enhances and identifies the nonlinear trend of mortality
rates within this hybrid approach by LC-RF. Random Forests are particularly helpful when
considering nonlinear relationships between variables. They have the following advantages: 1)
they are among the most accurate learning algorithms; 2) they can handle data that is
unbalanced; and 3) they provide estimations of the predictive ability of variables utilized. A
random subset of predictor variables is then evaluated at each node for splitting. There are
predictions by the model based on composite predictions across several trees to reduce variance
and prevent overfitting. Random Forest identifies nonlinear relationships and interactions of high
order within mortality data. Random Forest refines and captures the nonlinear trend of mortality
rates in this hybrid approach.

The Random Forest can be represented mathematically as,

n
- 1 -
hgr (x) = EZ h(x,0;)
i=1
where i (©;) are the random tree predictors and 6, ...8,, are random variables.
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A bootstrap sample of the data is used to train each tree. A random subset of predictor variables
is then taken into consideration for splitting at each node. By adding feature randomization and
bagging (bootstrap aggregation), this improves the generalizability of the model. Random Forest
performs well in high dimensional environments with varied interactions and non-linear
correlations (Cutler et al, 2007; Biau and Scornet, 2016).

In mortality forecasting, Random Forest has been used to replace traditional time series models.
k. values are forecasted and modeled by the Random Forest model (Hong et al, 2021). The
method has been reported to produce encouraging results in countries that experience high
complexity in mortality driven by environmental, health, and socioeconomic factors (Guelman et
al, 2015 and Czado et al, 2021).

2.2 Empirical Literature Review

Empirical studies indicate evidence on the efficiency and shortcomings of both the Lee-Carter
model and Random Forest in mortality forecasting. Various studies supported the model’s use.
For instance, a study by (Taruvinga et al, 2017) explored the efficiency of the Lee-Carter model
combined with ARIMA in the forecasting of mortality trends in Zimbabwe. They also compared
the Lee-Carter to the ARCH model in predicting mortality rates and discovered that it performed
better than the ARCH model. They also discovered that even though the two models showed
weakness in older age groups the Lee-Carter model was a better overall fit for Zimbabwean
mortalities.

Similarly, (Hong et al, 2021) found that machine-learning methods including Random Forest
made much better captures of non-linear mortality patterns than traditional demographic models.
They also discovered that the Lee-Carter-ARIMA hybrid model is the most suitable model to use
when predicting mortality rates for countries with good healthcare systems and longer life
expectancy. Additionally, the Lee-Carter-Random Forest exhibited lower RMSPE values for
Malysia's youth age groups (Hong et al, 2021). Forecasting accuracy increased significantly
when Random Forest was applied to communities undergoing socioeconomic transformations
(Czado et al, 2021). This supports the use of Random Forest to model mortality rates in
Zimbabwe. The country experiences high rates of HIV/AIDS, malnutrition and access to

healthcare is a challenge and this creates nonlinear mortality patterns.
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However, some have pointed out certain misgivings with these methods. The Lee-Carter model
might not be suitable for those populations that experience sudden socioeconomic discontinuities
(Villegas et al, 2018). There was evidence revealed which showed that machine-learning
approaches such as Random Forest are prone to overfitting when utilized on smaller data sets,
limiting their generalizability (Kogure et al, 2020). Additionally, (Yu et al, 2017) emphasized the
trade-off between accuracy and interpretability in Random Forest models, a concern for
mortality studies aimed at informing public policy.

Several have reported inconclusive results. (Haberman and Renshaw, 2012) showed that the
model works very well in a long-run projection but for the short-term, its results were
unsatisfactory over smaller populations. (Hanewald et al, 2013) reported an improved accuracy
by inclusion of machine-learning methods together with Lee-Carter, at the expense of higher

computational complexity.

The Lee-Carter model has mainly been used in forecasting mortality rates for the purpose of
pricing life insurance contracts (Taruvinga et al, 2017). When insurance companies are unable to
predict mortality rates accurately this could result in overpriced premiums and other consumers
might be unable to insure themselves. Accurate prediction allows them to provide new policies

with reasonable prices (Hong et al, 2021)

Research Gap

Despite these improvements in mortality modeling, gaps exist. The 0 to 24 years age group has
been rarely covered in studies due to varying mortality trends and determinants. Even though the
Lee-Carter model is well-studied, its integration with machine-learning techniques such as
Random Forest is unexplored in Zimbabwe (Hong et al, 2021). While many studies have been
conducted on the subject, they were primarily focused on model accuracy and did not place much
emphasis on explainability and usability in informing policy formulation. The study aims at filling
such knowledge gaps through comparative evaluation of the LC-ARIMA and LC-Random Forest

hybrid models' predictive power for youth mortality in Zimbabwe.
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2.3 Proposed Conceptual Framework

This section builds on the theoretical and empirical findings from previous studies.
Dependent Variable: Youth Mortality Rates (0-24 Years)

This research compares two hybrid models that combine the Lee-Carter with both ARIMA and
Random Forests. The study uses this dual-model approach because of the strengths and
limitations stated in the literature regarding both linear and nonlinear methods of forecasting
mortality rates.

Dependent variable in this study is the youth mortality rate. It is the mortality per unit of
population in the 0—24-year age group in Zimbabwe. It considers mortality trends in several
subgroups like children and young adults. Youth mortality is influenced by differing socio-
economic, demographic, and health system determinants. This includes poverty, healthcare
access levels, HIV/AIDS prevalence and education (Kembo and Van Ginneken, 2009). The
study estimates and projects mortality rates between 1990-2022 with the aim of establishing

historical patterns and informing future projections.

Independent Variables/Predictors

Independent variables are factors that influence youth mortality rates.
1.Age-Specific Effects

Mortality rates differ significantly for varying age groups, and the risks each group faces are
unique to them. Lee-Carter model captures these differences employing two main parameters: o
capturing baseline mortality levels for each age group and 3 capturing the responsiveness of each
age group to changes in mortality over time. Infants (0-4 years) die due to health-related causes,
including neonatal and infectious diseases, while young adults (18-24 years) fall prey to

accidents and drug misuse (Gakidou et al, 2010).
2.Time Trends

A thorough understanding of temporal dynamics is necessary to better understand mortality. The

HIV/AIDS epidemic, health crises or economic challenges may prompt changes in trends. These
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trends are represented by the mortality index k,, summarizing overall changes in mortality levels

across all age groups (Hyndman and Booth, 2008).
Hybrid Modeling Approaches

The LC-ARIMA and LC-Random Forest hybrid models share the same foundational structure.
They both decompose a matrix of age specific mortality rates into age specific constants, a time
varying constant and an error term. The difference between the two models is in forecasting the

time varying mortality index k.

The first component of the conceptual framework is the mortality rate data input. The input data
consists of the historical age-specific mortality rates from 1990 to 2011 for the Zimbabwean youths
aged between 0 to 24 years. This data set is used for parameter estimation and model training. For
the second stage, parameter estimation is carried out using the Singular Value Decomposition
method.

Forecasting of the mortality index k, is done in the third step. The LC-ARIMA uses Partial
Autocorrelation plots and ADF tests to determine the appropriate ARIMA model to use. The model
assumes linearity and stationarity. The LC-Random Forest model uses Random Forest regression

to find k.. Conversely this model captures nonlinear relationships.

In the fourth step the mortality indexes obtained are then combined with the previously estimated

a, and S, parameters. This gives us the predicted age specific mortality rates for future periods.

The final step focuses on model evaluation. The ability of each model to forecast mortality rates is

assessed using standard error metrics.

2.4 Expected Contributions

Enhanced Predictive Accuracy

This work combines the principles of the Lee-Carter framework with ARIMA and Random
Forest, with the aim to improve prediction accuracy. ARIMA is the best tool for describing
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temporal dependencies, while Random Forest captures non-linear relationships. These methods,

when combined, offer a robust means of forecasting mortality rates.
Model Comparison

During the study, the two hybrid models are evaluated using metrics such as Mean Squared Error
(MSE) and Mean Absolute Error (MAE) to check which of the two models is better suited to

model and predict mortality rates.
Policy Implications

Policymakers can use accurate projections of youth mortality rates to design focused health
interventions. This includes identifying high-risk age groups in programs, allocating scarce
resources to areas where the average life expectancy is higher and developing programs that

address various socio-economic factors related to health.

2.5 Summary

This chapter reviewed theoretical and empirical studies based on the Lee-Carter model, ARIMA,
and Random Forest approaches. It outlined their advantages and disadvantages while
concentrating on mortality modelling and predictions. It pointed out holes in earlier studies and
offered a conceptual framework to fill them. In addition to the theoretical and empirical findings
covered here, the methodology and data analysis strategies employed in this study will be

covered in detail in the following chapter.
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CHAPTER 3: RESEARCH METHODOLOGY

3.0 Introduction

This chapter attempts to show the methodology used in conducting the research on the
comparative analysis of LC-ARIMA and LC-Random Forest Hybrid models. This methodology
consists of research design, data sources, description of variables that include analytical model

specifications, model diagnostic tests, and ethical considerations.

3.1 Research Design

The study follows a quantitative research design that uses statistical modeling and machine
learning techniques to help analyze and predict mortality rates. This is an approach that enables
the identification of patterns and trends in mortality rates in Zimbabwe, especially for youths.

It also compares and evaluates the forecasting accuracy of two hybrid models. This comparison
helps us to ascertain the most appropriate model for forecasting mortality rates to inform public
health strategies, academics and even the insurance sector. The integration of the traditional Lee-
Carter model and machine learning using Random Forest allows for a more comprehensive
approach. The study is exploratory because it seeks to identify mortality patterns and trends
among Zimbabwean youths.

This would allow the combination of two conventional yet powerful statistical techniques with
the modern machine learning models, enhancing the robustness of the forecasting. In turn, this
will enable the testing of the limitations and strengths of each model. The research design
comprises of model performance evaluations. The accuracy of the two models is assessed using

error metrics such as Mean Absolute Error (MAE).

The research design for this study is divided into the following sections, namely data collection

and preparation, model development, forecast reconstruction and model evaluation.

3.2 Population and Sampling

This study uses mortality rate statistics for Zimbabwean youth between the ages of 0 and 24
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years inclusive. Statistics from valid sources are used. The sample period is 1990 to 2022 in

order to have reliable trend analysis as well as accurate forecasting

3.3 Data Sources

The data for this study is sourced from the UNICEF global database.

3.4 Description of Variables and Prior Expectations

This section outlines the independent and dependent variables that were used. It also includes the
anticipated outcomes for the two hybrid models, considering their features and historical
patterns.

The focus of the study is on the mortality rates of young individuals in Zimbabwe aged 0 to 24,
which serve as the dependent variable. In this case the mortality rate is the central death rate for
each age group across different time periods. These mortality rates are expressed in logarithmic

form which is consistent with the Lee-Carter model.

The first independent variable is time which is represented by the year of observation. The range
is from 1990 to 2022. The mortality index, k; is designed to track changes in mortality over

time.

The second independent variable is age groups. The data is aggregated into five-year bands
which are 0-4, 5-9, 10-14, 15-19 and 20-24. Each of these groups represents a distinct phase of
youth development. Each group has different risk exposure and health vulnerabilities. This
stratification allows for a more accurate modeling of age-specific mortality dynamics within the

broader youth category.
Prior Expectations

According to historical death patterns and theoretical reasoning, mortality rates are expected to
decrease slowly with time. This is because of the improvements in health and life standards in
Zimbabwe. LC-ARIMA is expected to capture linear trends well. LC-ARIMA is the best model
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to use for projecting mortality in cases where changes are slow and predictable. In contrast, the
Lee-Carter (Random Forest) model is perhaps better suited to find non-linear trends. The model
would be able to detect sudden shifts in mortality patterns due to epidemics of diseases or
distortions in the healthcare system more effectively.

3.5 Analytical Model Specification and Justification

This section outlines the analytical frameworks applied in the study to calculate age-specific
mortality rates of individuals between 0 and 24 years in Zimbabwe. Model specification is
supposed to illustrate the mathematical form and contents of the forecasting models employed. It
also gives variables employed and how they interact. The Lee-Carter model was regarded as the
base model based on its precision in demographic forecasting. The model has been expanded to
include a machine learning method, Random Forest, and a traditional time-series approach,

ARIMA. The key elements and structural equation of both hybrid models are presented.

The Base Model: Lee-Carter Specification

The Lee-Carter model is the base model for this study. This model was combined with ARIMA
and Random Forests to forecast mortality rates.

Inmy g = ay+ Brke + €
Where
My, : actual mortality rate for age x in year t,
a, : average mortality specific to age x,
B, reflects the sensitivity of mortality at age x to changes over time ,
k::time varying index

€: the random variation for age x at time ¢t that is not explained by the model
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In (mgy,y) is the natural logarithm of the mortality rate (logarithm to base e). The parameters are

estimated using Singular VValue Decomposition. The parameter k, is then forecasted into future

periods using either a time series model or a machine learning model.

LC-ARIMA Hybrid Model

This is the hybridization of the Lee-Carter model and ARIMA to predict the mortality index k.
The selection of the ARIMA parameters (p, d, q) is guided by the Augmented Dickey Fuller
(ADF) tests, Partial Autocorrelation Function (PACF) plots and Autocorrelation Function (ACF)
plots.

LC-Random Forest Hybrid Model

A Random Forest regression model is used in place of the ARIMA forecasting step. A Random
Forest method is trained to forecast future values of k, ,once a, and S, historical values have
been estimated. To provide predictions that are more accurate, this machine learning method

constructs decision trees and aggregates their results.

Justification for Hybrid Approaches

The idea of using hybrid models for this study comes from the need of enhancing and improving
the existing Lee-Carter model first proposed in 1992. Traditional models may not adequately
predict mortality rates with complex non- linear relationships. The original model has proven to
be effective in high income countries and this study aims to investigate its performance in a more
volatile environment and combined with machine learning methods. By integrating ARIMA and

Random Forests this enables us to address these instances.

Steps in Data Analysis
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1. Data preprocessing

e Firstly, mortality rate data is collected from the UNICEF database. The data is
downloaded in Microsoft Excel format which is suitable for analysis.

e Load the dataset on Google Collab’s Python using pandas library.

e Cleaning and handling missing values. It is important to identify missing values as they
would greatly impact the accuracy of the results. Check for null entries.

e Normalization of data. Machine learning methods require the data to be in the same
range. This is done by applying the MinMaxScaler from the sklearn.preprocessing

module.

2. Model estimation
Parameter Estimation Using Singular VValue Decomposition

The Lee-Carter parameters are obtained using SVD. The mortality rate data must be in matrix

form.

let M be the matrix of log-transformed mortality rates, where:

My, My My
M= m2:1 m22 mz;t

mx,l mx,Z mx,t

Using SVD, the matrix M can be decomposedas: M = U ZVT

my1 My My Uy Uz Uyg . Vi1 Vi2.. Vig
mz1 Mmzp2.. m2t — UZ1 UZz u2t 0 52 1721 V2,2.. V2t

mx,l mx,z x,1 vx,Z vx,t
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Where:
U: The left singular matrix (x X x), containing the left singular vectors.

¥: A diagonal matrix (x x t) of singular values, which represents the magnitude of the data’s

variance along the principal components.
VT: The transpose of the right singular matrix (t x t), containing the right singular vectors.

With the use of python programming language, the parameters are obtained using the Singular
Value Decomposition method. The mean mortality specific to age x (a,) is obtained by dividing
the logarithm of age specific death rates with time.

The sensitivity of mortality at age x (f,) and the time varying index t (k; ) are obtained by

applying the following equations using python.
i{\ == 61 X (171’1 172’1 ...vt’l)

—

b, = X (Uyq Upq llyq)T
X Zuxll ( 1,1 2,1 x,1)

e Use python's numpy.linalg.svd() to decompose M.

e Numpy, pandas and matplotlib for the graphical representation were utilized in these
following steps.

e «a, was estimated by averaging log mortality rate for all age groups for the years 1990
to 2011.

e [, was taken from the first column of matrix U, normalized so that the sum of g, = 1.

e k, was calculated from the first row of V transpose times the largest singular value,
adjusted so that the means are zero (by Lee-Carter constraints).

e Differencing (for ARIMA) for historical k; values' stationarity using the Augmented
Dickey Fuller (ADF) test with the statsmodel package.

e Identify the suitable ARIMA model based on Autocorrelation Function (ACF) and
Partial Autocorrelation Function (PACF) plots.
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Forecasting using ARIMA

e The ARIMA (1,2,1) model is used to predict values for k,
e The statsmodels.tsa.arima.model. ARIMA class in python is used.

ke = k{t—l} +d+ €
Where:
d represents the drift parameter,
€ represents the uncorrelated error term

e Forecasted values for k, are plugged back into the Lee-Carter equation to generate

mortality rate forecasts for each age group.

Forecasting using Random Forest

e Prepare k, as target variable.
e Create lag-based features from past values of k, as predictors.
e Split data into training and test datasets, though in this case it is 80:20.

e Use sklearn.ensemble.RandomForestRegressor to train a model with python.

3. Model evaluation

e The trained models of Lee Carter (ARIMA) and Lee Carter Random Forest are used for

predicting mortality rates from 2012 to 2022.

e Predicted k, values are combined with a, and S, to reconstruct predicted log mortality

rates.

e Compare model performance using error metrics.

The error metrics used to compare the two models are Mean Absolute Error (MAE), Mean Squared
Error (MSE), and Root Mean Squared Percentage Error (RMSPE).
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3.6 Model Diagnostic, Validation and Reliability Tests

Pre-model diagnostic

Before fitting the ARIMA model first test the historical k, values for stationarity. The Augmented
Dickey Fuller (ADF) test was used for this.

Null hypothesis: The series is non-stationary.

Alternative hypothesis: The series is stationary.

Reliability Tests

For ensuring the reliability of the models, the subsequent tests were utilized.
The Mean Absolute Error (MAE) statistic reports the average deviation of the predictions made
by the model from the actual mortality rates as quantified by the average magnitude of prediction

errors. The best predictive model is represented by a lower MAE.

|mx,t,observed - mx,t,fittedl

MAE =Y
number of My ; opserved

The average of the squared differences between observed and expected values is called the mean
squared error, or MSE. It squares the variances and hence is outlier sensitive. This metric is

useful for giving more weight to larger errors.

2
(mx,t,observed - mx,t,fitted)

MSE =)’
number of My t observed

Expressing predictive accuracy as a percentage allows the extent to which the model correctly
fits the actual data to be more intuitively obvious. RMSPE gives a normalized metric that is more
understandable, particularly when working with public health measures.
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2
(mx,t,observed - mx,t,fitted)

X 100%
number of My ¢ opserved

RMSPE = \/ ¥

3.7 Ethical Considerations

Findings were presented clearly in an objective manner to ensure that conclusions made from the
findings are viable and plausible. This is to avoid misinformation through misrepresentation of
findings. The researcher will report all results honestly.

There is a high requirement to maintain data confidentiality and privacy, especially in the case of
sensitive information, such as that related to mortality rates. The UNICEF database anonymously
collects data, so there is no chance of anyone's personally identifiable information appearing in the
study.

The analytical methods ensured that the models were suitable in answering the research questions.
Multiple metrics have been used to measure the predictive ability of the models. It, therefore,

ensures that the study is free of any aspect of bias and manipulation.

The results from this study are meant to contribute to academic and public health knowledge. This
means that results are presented in a way that does not lead to public misinterpretation or panic.

3.8 Summary

This chapter showed in detail the research methodology used in this study to compare the Lee-
Carter (ARIMA) and Lee-Carter (Random Forest) hybrid models. The avoidance of bias and
manipulation was emphasized throughout. The methodological choices aim to provide an
accurate conclusion on which of the two hybrid models is most suitable to model and forecast

youth mortality rates.
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CHAPTER 4: DATA PRESENTATION, ANALYSIS AND DISCUSSION

4.0 Introduction

This chapter will forecast mortality rate data by using the LC-ARIMA and LC-Random Forest

hybrid models. This study aims to compare the possibilities of these two hybrid models in

forecasting. The model will be developed by using historical death rate data from 1990 to

2011. It will be validated by using data from 2012 to 2022.

4.1 Descriptive Statistics

The mortality rates in this study are divided into five age groups which are 0-4, 5-9, 10-14, 15-19

and 20-24. The most important descriptive statistics are clearly illustrated in the table below.

These include the third quartile (Q3) and first quartile (Q1), mean, minimum and maximum, and

standard deviation for every age group. As such, the central tendency and change of trend in

youth mortality is better illustrated.

Table 4. 1 Summary Statistics

Age Mean | Median | Minimum | Maximum | Standard Q1 Q3
Group Deviation
Oto4 80.304 | 90.223 47.729 100.213 17.833 62.291 | 93.637
5to9 7.403 | 8.336 4.198 8.783 1.551 6.199 | 8.444
10to 14 | 6.572 | 6.984 4.805 7.568 1.001 5.631 | 7.475
15t019 | 10.003 | 10.056 7.512 11.210 0.940 9.590 | 10.698
20to24 | 19.138 | 19.083 14.396 24.304 3.445 15.877 | 22.414

Table 4.1 is a summary of significant trends in the age-specific mortality rates among

Zimbabwean youth. Mean rate for the age group 0-4 was the highest at around 80.3 deaths per

1000. This is evidence that youngsters below five years of age are the most vulnerable to death
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compared to the rest of the age groups. It was the most spread-out group with a standard
deviation of 17.8. The minimum and maximum of 47.7 and 100.2 respectively indicate the

mortality rates varied widely throughout the study.

For the age groups 5-9 and 10-14, mean mortality rates decline with increasing age. The groups
have means 6.57and 7.40 respectively. Both these groups have lower standard deviations, which
implies that mortality trends among school aged children are more stable. This shows that

mortality risks lessen during mid-childhood.

From the age group 15-19 and to 20-24 a gradual increase in mean mortality rates is observed.
The mean mortality rates are 10.0 and 19.1 respectively. The age group 20-24 has a standard
deviation of 3.45. This may be a result of economic hardship and other socioeconomic risks
faced by young adults. It is marked by increased mortality in infancy and early childhood,
followed by some stability during adolescence and then ultimately another peak during young
adulthood.

4.2 Diagnostic Tests

Augmented Dickey-Fuller (ADF) Test

To ensure validity of the modeling process it is important to ensure that the mortality index series
k. is stationary. The ADF test, a commonly used unit root test was performed to check the
mortality index kappa for stationarity. A unit root test checks whether a time series shows non-

stationarity or change in mean and variance over time.
Null hypothesis (H,): The series is non-stationary (has a unit root).
Alternative hypothesis (H,): The series is stationary.

Stationarity of the mortality indicators was obtained after second differencing. The ADF
test statistic was -5.12 and p-value 1.27 x 107>, The critical value is higher than the test statistic
and the p-value is farlessthan 0.05 significance level. This indicates that the ADF

test decisively rejects the null hypothesis of a unit root (non-stationarity).
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4.3 Analytical Model

Lee-Carter Model Estimation

The Lee-Carter model was adopted as the basis in projecting the mortality rates. To obtain the
parameters the mortality rates are first logarithm transformed. The Singular Value Decomposition
technique is then applied to the logarithm transformed mortality matrix. The technique

decomposes the matrix into three matrices, namely, the U, VV and S matrices.

From these three matrices, «,, was calculated as the average logarithm mortality rate for each age
group across all years. 8, was obtained from the first column of matrix U, normalized such that
the sum of B,= 1. k, was computed from the first row of V transpose multiplied by the largest

singular value, rescaled to ensure that the means equal zero (according to Lee-Carter constraints).

These values for a,, B, and k; are then used to obtain future mortality values using ARIMA and

Random Forests. The values are as shown below.

Table 4. 2 : Age-specific Lee-Carter parameters

Age Group Alpha (a,) Beta (B)
0-4 4570371 0.115780
5-9 2.580941 0.026171
10-14 2.390467 0.186441
15-19 2.701620 0.265999
20-24 3.237091 0.405609
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Table 4. 3 Mortality Index Over Time (1990-2011)

Year Kappa (k;) Year Kappa (k;)
1990 -0.380188 2001 0.16127313
1991 —0.310297 2002 0.139966
1992 -0.239386 2003 0.132223
1993 -0.1696 2004 0.122638
1994 -0.102782 2005 0.110784
1995 -0.040617 2006 0.098632
1996 0.013064 2007 0.081493
1997 0.057386 2008 0.054769
1998 0.092236 2009 0.022196
1999 0.1167 2010 0.015353
2000 0.1769955 2011 -0.05539

ARIMA FORECASTING OF k,

To find an appropriate ARIMA model, plots of the Autocorrelation Function and Partial
Autocorrelation Function have been obtained to propose Autoregressive and Moving Average
terms to be included in the model. From these plots, there was a clear peak at lag 1 observed
using ACF, and this indicates a first order MA. The PACF plot displayed a peak at lag 1 that was
followed by the quick decline indicating AR of 1. An ARIMA (1,2,1) model is thus valid in the
present research as the kappa series was stationary following second differencing.
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Figure 4. 1 ACF and PACF plots
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Forecasted Kappa Using ARIMA
The ARIMA (1,2,1) model was used to obtain forecasts for kappa from 2012 to 2022.

Table 4. 4 : Forecasted Kappa (2012-2022)

Year Kappa | Year Kappa
2012 0.010647 2018 -0.195034
2013 -0.023862 2019 -0.229290
2014 -0.057988 2020 -0.263540
2015 -0.092302 2021 -0.297793
2016 -0.126523 2022 -0.332044
2017 -0.160790
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After obtaining the relevant mortality indexes for 2012 to 2022 the previously calculated alpha,
beta and kappa were used to calculate mortality rates for 2012 to 2022 for each age group (0-4,
5-9, 10-14, 15-19 and 20-24).

Figure 4. 2 ARIMA Forecasts (2012-2022)

year age B to 4 age 5 to 9 age 18 to 14 age 15 to 19 age 20 to 24

e 2012 85.801465 7.993268 7.234061 168.111486 19.832404
1 20813 83.759335 7.852058 7.213330 10.623280 19.300867
2 2814  82.382533 7.724988 7.213157 9.969164 18.779038
3 20815 81.431693 7.608238 7.185270@ 9.914479 18.269015
4 2816 806.308331 7.582967 7.149066 9.867751 17.763535
5 2817 79.448335 7.410735 7.898085 9.757879 17.260769
6 2818 78.378808 7.328986 7.816013 9.599186 16.791198
7 2019 77.788568 7.252287 6.906999 9.366618 16.319133
3 2828  77.852154 7.173168 6.767820 9.143794 15.864988
9 2021 75.967137 7.1877e7 6.648758 8.920848 15.426494
18 20822 75.169880 7.041888 6.494323 B8.660791 14.972163

Random Forest Regression Forecasting of k;

A machine learning method was used to forecast values for k; . Using historical kappa values the
model generated lag-based features which were then used to train the Random Forest model. The
data is first entered into a data frame with two columns years and kappa. Lagged features are
created forming kappa lag 1, kappa lag 2 and kappa lag 3.

The Random Forest was trained with 100 estimators and a predetermined random state to
guarantee reproducibility. The main objective was to produce forecasts for future periods
therefore no specific set was necessary. The final three known k, values from the training data
made up the starting input. The following k., which the trained model predicted for each
anticipated year, was added to the lag sequence to create subsequent forecasts. This iterative
process produced predicted mortality index values for each year from 2012 to 2022.
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Table 4. 5 Forecasted Kappa (2012-2022)

Year Kappa Forecasts | Year Kappa

Forecasts
2012 0.139273 2018 0.147070
2013 0.076462 2019 0.079082
2014 0.083448 2020 0.074081
2015 0.144287 2021 0.146535
2016 0.069857 2022 0.070392
2017 0.077001

The forecasted mortality indexes from 2012 to 2022 were used to obtain the mortality forecasts

for these years in all the age groups in this study.

Figure 4. 3 Random Forest Forecasts (2012-2022)
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The forecasts from the two hybrid models were compared with the actual observed mortality

rates from 2012 to 2022. The MAE, MSE and RMSPE were used.
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Table 4. 6 Forecasting Accuracy Comparison: LC-ARIMA vs LC-Random Forest

Age Group | Metric ARIMA Random Forest | Better Model
0-4 MAE 22.729603 7.043024 RF
MSE 531.945710 51.592178 RF
RMSPE% | 42.746166 13.390898 RF
5-9 MAE 2.056996 0.603541 RF
MSE 4.580966 0.395840 RF
RMSPE% | 44.328594 13.052778 RF
10-14 MAE 0.415304 0.922381 ARIMA
MSE 0.177305 0.874775 ARIMA
RMSPE% | 5.723657 12.538734 ARIMA
15-19 MAE 0.157537 0.4843994 ARIMA
MSE 0.031664 0.336216 ARIMA
RMSPE% | 1.874688 6.275056 ARIMA
20-24 MAE 1.556289 1.091707 RF
MSE 2.675532 1.237131 RF
RMSPE% | 10.104081 7.265891 RF

4.5 Findings and Discussion

This study compared the effectiveness of the LC-ARIMA and LC-Random Forest models in
forecasting mortality rates. The LC-ARIMA hybrid model performed better than the Random
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Forest hybrid model in the 10-14 and 15-19 age groups. The relatively smooth and linear trends
in these age groups may have aligned more closely with the underlying assumptions of the
ARIMA model.

For the 0-4, 5-9 and 20-24 age groups the LC-Random Forest model outperformed the ARIMA
hybrid model. The Random Forest could detect intricate nonlinear patterns in mortality within
these groups. The model found it difficult to predict mortality rates for the 10-14 and 15-19 age
groups.

Following the prediction of mortality rates by the two hybrid models, the predicted mortality
rates were verified against the actual mortality rates between the years 2012 and 2022. This is

depicted graphically below for each group.
Plots of Actual versus Predicted Mortality

Figure 4. 4 Forecast vs Actual Mortality rates for Age 0 to 4

—a— Actual
- ARIMA Forecast
—a&— Random Forest Forecast

MortdTity Rate
A h [=:] =i = -] ]
L7 (=] w [=1 L [=1 L

W
=
i

2012 2014 2016 2018 2020 2022
ear

43



Figure 4. 5 Forecast vs Actual Mortality rates for Age 5to 9
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Figure 4. 6 Forecast vs Actual Mortality rates for Age 10 to 14
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Figure 4. 7 Forecast vs Actual Mortality rates for Age 15 to 19
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Figure 4. 8 Forecast vs Actual Mortality rates for Age 20 to 24
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It was the aim of this study to not only compare model accuracy but to also describe how

prediction results can be utilized to inform public health interventions. The LC-Random Forest
model was most accurate in the prediction of mortality in the 0—4, 5-9, and 2024 age groups.
These results point to the need for increased investment in early childhood health interventions

such as neonatal care, nutrition programs, and immunization campaigns. Similarly, the high risk
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in the age group 20-24 years highlights the importance of attending to young adult health issues,

including HIV prevention, mental health services, and injury control.

Conversely, the 10-14 and 15-19 age groups, where mortality trends were less volatile, were
more accurately reflected by the LC-ARIMA model. This suggests that standard statistical
models can still usefully inform policy for adolescent health, where trends are comparatively less
volatile. The inferences from these projections can facilitate age-specific policy formulation and

allow for more effective allocation of limited health resources.

Collectively, the interpretation of the model output provides evidence that hybrid forecasting

tools can directly inform targeted public health responses in Zimbabwe.

4.6 Discussion of Results

The results emphasize that model performance varied by age bands in accordance with
differences in patterns of mortality trends. LC-Random Forest was superior to LC-ARIMA in the
0-4, 5-9, and 20-24 age bands. These tend to be influenced by complex and non-linear mortality
drivers such as malnutrition, neonatal conditions, and extrinsic causes such as HIVV/AIDS and
accidents. Random Forest, since the algorithm can capture non-linear interactions, was better

suited for these patterns.

On the other hand, LC-ARIMA had a better fit for the 10-14 and 15-19 age groups that showed
more stable and linear mortality trends. This is echoed by ARIMA's capacity to model stationary
time series, suggesting its suitability for those environments characterized by smoother mortality

profiles.

These findings validate the principle that model selection has to be data-based and age-
dependent. For planning in public health purposes, this means interventions can be maximized
through selecting the model that optimally describes the mortality profile of every age group.
The hybrid approach thus provides a practical advantage through utilization of the virtues of both

traditional and machine learning approaches.
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4.7 Summary

This chapter showed a comparative analysis of two hybrid models with the Lee-Carter model as
the base model. Historical data from 1990 to 2011 was used to obtain the parameters of the Lee-
Carter model. Using this data the mortality index kappa was calculated using two different
approaches Random Forests and ARIMA. The forecasted kappa was then used to forecast
mortality rates from 2012 to 2022.

The LC-ARIMA hybrid model gave better results than the LC-Random Forest model for two of
the age groups. The Random Forest model had the advantage of flexibility, and it successfully
forecasted mortality rates for three of the age groups. This shows that the classical Lee-Carter
model combined with ARIMA and Random Forest can be relied on when it comes to

demography forecasting especially in Zimbabwe mortality profiles.
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CHAPTER 5: SUMMARY, CONCLUSION AND RECOMMENDATIONS

5.0 Introduction

This chapter summarizes the findings from chapter 4. The chapter showed an analysis of the LC-
ARIMA hybrid model and the LC-Random Forest hybrid model with a comparative basis.
Chapter five provides research conclusions aligned to the objectives of the study. The researcher
offers recommendations at the end of the chapter, addressing policymakers, those in the health

sector and insurance sector.

5.1 Summary of the study

The introduction, background of the study, and the research questions of the study are provided
at the beginning of the thesis chapter one. Chapter one consists of the study objectives to model
and forecast mortality rates for ages 0 to 24 in Zimbabwe from 1990 to 2011 with LC-ARIMA
and LC-RF hybrid models and to compare and assess the accuracy of LC-ARIMA and LC-RF
hybrid models in predicting mortality for the specified age groups based on quantitative
performance measures for the years 2012 to 2022.

Chapter two of the research addresses work by other researchers who have applied the Lee-
Carter model. Pros and cons of the model when it comes to forecasting mortality rates are
addressed in this chapter. The concept of the application of machine learning as a

complement to the Lee-Carter model arose and was then followed by pointing out any research
gaps regarding that field of research.

A detailed methodology for this study has been given in chapter three. In this

way, chapter three showed that the Lee-Carter model, ARIMA and Random Forest model were
to be used for the forecast of mortality rates. Motivation for the use of a hybrid modeling
approach was also given in this chapter, showing how mortality modeling might benefit

from the best of two different models. Finally, the chapter reflected on all those steps taken to
ensure reliability and accuracy of the results.

In chapter four, the Lee-Carter model was used to obtain the parameters needed to model the
mortality rates. ARIMA and Random Forest techniques were then used to obtain mortality
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indexes and to forecast mortality rates. The two hybrid models were compared and assessed

using error metrics.

5.2 Summary of the Findings

The two hybrid models successfully modeled the mortality rates. The parameters for the Lee-
Carter model were successfully derived from the mortality rates. According to the study, the LC-
Random Forest model performed better compared to the LC-ARIMA when it came to
forecasting mortality rates since it successfully modeled three of the five age groups. The LC-
ARIMA managed to provide better results than the machine learning method in the remaining

age groups.

5.2.1 Objective 1

The first aim was to model Zimbabwean youths' mortality rates between the ages of 0 and 24
based on LC-ARIMA and LC-Random Forest models. This aim was accomplished by employing
the Lee-Carter model to obtain the mortality index (k;) for every year from 1990 to 2011. The
mortality index was extracted by means of Singular VValue Decomposition. The death index was
recorded based on the time dynamics of Random Forest and ARIMA models. Age specific
parameters (a, and f3,.) were attained from the model across the age groups. These parameters

were used to reconstruct mortality.

5.2.2 Objective 2

The second objective was to evaluate and compare the accuracy of LC-ARIMA and LC-Random
Forest hybrid models in forecasting mortality for the target age groups using quantitative
performance metrics from 2012 to 2022. The two hybrid models were used to generate mortality
forecasts from 2012 to 2022. Table 4.4.1 shows the error metric values for each of the hybrid
models. Overall, the table shows that the LC-Random Forest model performed better than the
LC-ARIMA model in three age groups (0-4, 5-9 and 20-24). The LC-ARIMA outperformed the
LC-Random Forest in the 10-14 and 15-19 age groups.
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5.2.3 Objective 3

The third objective sought to interpret age-specific mortality projections and derive implications
for public health interventions. This was achieved through an analysis of which age categories
each hybrid model forecasted more accurately and comparing these to possible real-world
interventions. For instance, the LC-Random Forest model forecasted more accurately for
mortality in age categories 0—4, 5-9, and 20—24, which are typically more subject to exogenous
health and socioeconomic shocks. These results can inform public health actors to target
intervention among these groups, for instance, through investment in neonatal care, school-age
health interventions, and mental health in young adults. The trends of prediction thus provide
practical advice for planning age-targeted health interventions in Zimbabwe.

5.3 Gaps and Limitations

Random Forest model could have been unable to provide more accurate predictions because not
enough data was present between 1990 and 2022. The model could have overfitted in some age
groups especially when the trend was linear leading to poor generalization. LC-ARIMA and LC-

Random Forest models did not involve any socioeconomic or health-related factors

5.4 Project Constraints

The researcher could not obtain mortality rates for other years and age ranges from the national
statistics bureau (ZIMSTATS) that would have been more accurate. Data for a wider age group
and longer timespan would have caused the LC-Random Forest to perform better, which could
not give more accurate mortality predictions despite being better than those of the LC-ARIMA

predictions.

5.5 Recommendations

Several recommendations can be made for public health policy making and for future researchers.

Public health authorities should invest in attaining age specific aggregated mortality data to enable
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data driven research and policy making. Combining reliable mortality forecasting with national
health planning can result in effective early warning systems and timely allocation of resources.
Forecasts on the mortality of the younger generation can enable actuaries and insurance providers
to develop life and health insurance for the youth. Based on these models, actuaries and insurers

can further anticipate dependency ratios, healthcare expenses, and pension obligations.
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APPENDIX 1

The following shows the code used to analyze mortality rate data using Google Colab’s python.

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler

# Create a DataFrame

df = pd.DataFrame({data)

df .set index{'year', inplace=True)
print({df)

descriptive stats = pd.DataFrame{{
"Mean”’ : df.mean(),
'‘Median’: df.median(),
"Min': df.min(),
"Max': df.max(),
'Std Dev': df.std(),
'Q1': df.quantile(©.25),
'Q3': df.quantile(B.75)
1)

print({descriptive stats.round(3))}

scaler = StandardScaler()

scaled data = scaler.fit_transform(df)

scaled df = pd.DataFrame(scaled data, columns=df.columns, index=df.index)
df = pd.DataFrame(data)

df.set_index("year", inplace=True)

min_value = df.min().min()

buffer = B.@81 # Small buffer

constant_to_add = abs(min_value) + buffer

df scaled = df + constant_to_add

# Step 1: Convert to DataFrame
df = pd.DataFrame(data)

# Step 2: Set 'year' as index
df.set_index('year', inplace=True)

# Step 3: Log Transformation
log mortality = np.log(df)

# Step 4: Calculate alpha (age-specific average log mortality)
alpha = log_mortality.mean(axis=8)

# Step 5: Center the data by subtracting alpha
centered log mortality = log mortality - alpha




# Step 6: Apply SVD to the centered log mortality
U, s, Vt = np.linalg.svd(centered log mortality, full matrices=False)

# Step 7: Extract first components for beta and kappa
beta = vi[e, :]
kappa = U[:, @] * s[8]

# Step 8: Normalize beta to sum to 1
beta = beta / np.sum(beta}

# Step 9: Adjust kappa accordingly and center to have mean zero
kappa = kappa * np.sum{beta)
kappa = kappa - np.mean(kappa)

# Step 18: Create DataFrames for parameters

alpha df = pd.DataFrame(alpha, columns=["alpha'])}

beta_df = pd.DataFrame(beta, index=df.columns, columns=['beta’])

kappa df = pd.DataFrame(kappa.reshape(l, -1), columns=df.index, index=[ kappa'])

# Step 11: Print Results
print(“Alpha (Age-specific average log mortality):")
print({alpha_df)

print({"\nBeta (Age-group sensitivity to mortality changes):")
print("\nKappa (Time-varying mortality index):")
print(kappa_df)

# Step 1: Log Transformation (if needed)
data['K_log'] = np.log(data['K'] - data[ 'K'].min() + 1) # Shift to avoid log(@)

# Step 2: First Differencing on Log Transformed Data
data['K_log diff'] = data[ 'K_log'].diff().dropna()

# Step 3: Second Differencing on Log Transformed Data
data['K_log diff2'] = data[ 'K_log_diff'].diff().dropna()

# Step 4: Check Stationarity of Log Differenced Data
adf result log diff2, kpss result log diff2 = check stationarity(data['K log diff2'].dropna())
print( ADF Statistic (Log Second Differenced):’, adf result log diff2[@], 'p-value:', adf _result log diff2[1])

# Convert to DataFrame
data = pd.DataFrame(K, columns=['K'])

# Step 2: Log Transformation
data['K_log'] = np.log(data['K'] - data[ 'K'].min() + 1) # Shift to avoid log(e)

# Step 3: First Differencing
data['K_log_diff'] = data[ 'K_log'].diff().dropna()




# Step 4: Second Differencing
data[ 'K_log_diff2'] = data['K_log_diff'].diff().dropna()

# Step 5: Check Stationarity of Log Second Differenced Data
def check_stationarity(series):

adf result = adfuller(series)

return adf result

adf result log diff2, kpss result log diff2 = check stationarity(data[ 'K _log diff2'].dropna())

print( ADF Statistic (Log Second Differenced):’, adf result log diff2[@], 'p-value:', adf result log diff2[1])
# Step 6: ACF and PACF Plots

plt.figure(figsize=(12, 6))

# ACF Plot

plt.subplot(l, 2, 1)

sm.graphics.tsa.plot acf(data[ 'K log diff2'].dropna(), lags=18, ax=plt.gca())
plt.title('ACF Plot of Log Second Differenced Data')

# PACF Plot

plt.subplot(1l, 2, 2)

sm.graphics.tsa.plot pacf(data[ 'K _log diff2'].dropna(), lags=18, ax=plt.gca())
plt.title( 'PACF Plot of Log Second Differenced Data")

plt.tight layout()

Step 7: Fit ARIMA Model (Example: Replace p and q with identified orders)
1 # Replace with identified AR order
2 # Differencing order (second differencing)
1 # Replace with identified MA order

model = ARIMA(data[ 'K'], order=(p, d, q))
model fit = model.fit()
print(model fit.summary())

# Step 1: Fit the ARIMA(1, 2, 1) model
model = ARIMA(kappa_t, order=(1, 2, 1))
model fit = model.fit()

# Step 2: Forecasting for 2012 to 2822

forecast steps = 11 # 2012 to 2822

forecast = model fit.get forecast(steps=forecast steps)
forecast_mean = forecast.predicted mean
forecast conf int = forecast.conf int()

# Step 3: Create a DataFrame for forecasted values
forecast_years = list(range(2012, 2823))
forecast df = pd.DataFrame({

'year': forecast_years,

'kappa forecast': forecast mean




# Step 4: Print the forecasted kappa values
print(forecast df)

# Forecasted Kappa values (from ARIMA model)
forecasted kappa = np.array([
8.ee6198, -0.834686, -0.878098, -0.123981, -6.171954,
-8.222129, -0.2743688, -8.328354, -0.384181, -0.441673, -0.580748

1))

# Step 1: Calculate forecasted mortality rates using Lee-Carter model
mortality rates_lee carter = {}

for age group in alpha x.keys():
mortality rates lee carter[age group] = [
np.exp(alpha x[age group] + beta x[age group]| * kappa) for kappa in forecasted kappa

# Step 2: Create a DataFrame for the mortality rates
mortality rates lee carter_df = pd.DataFrame(mortality rates lee carter, index=range(2812, 2823))

# Step 3: Print the forecasted mortality rates
print(mortality rates lee carter_df)

# Create a DataFrame

# Step 2: Create Lagged Features
def create_lagged features(data, lags=3):
for lag in range(1, lags + 1):
data[f'kappa lag {lagl'] = data[ "kappa'].shift(lag)
data.dropna(inplace=True) # Remove rows with NaN values
return data

# Add lapged features
data = create lagged features(data)

# Separate features (X) and target (y)
X = data.drop(columns=['year', "kappa']l)
y = data[ "kappa’ ]

# Step 3: Train the Random Forest Model
rf = RandomForestRegressor(n_estimators=108, random state=42)
rf.fit(X, y)

# Step 4: Forecast for 2012 to 2822

forecast years = np.arange(2012, 2823)

forecast_data = pd.DataFrame({ year': forecast_years})
# Initialize a DataFrame to store forecasted kappas
forecast_kappas = []




# Use the last 3 known kappas as the initial inputs
last known kappas = kappa data[-3:]

for year in forecast_years:
# Create lagged input from the last known kappas
lagged input = pd.DataFrame([last_known_kappas], columns=[f'kappa_lag {i}' for i in range(1, 4)])

# Forecast the next kappa
predicted kappa = rf.predict(lagged input)[@]
forecast_kappas.append(predicted_kappa)

# Update the known kappas
last_known_kappas = np.append(last_known_kappas[1:], predicted kappa)

# Combine forecasted kappas into the DataFrame
forecast_data[ 'kappa'] = forecast_kappas

# Print forecasted kappas
print("Forecasted Kappa (2012-2022):")
print(forecast_data)

# Calculate mortality rates for each age group and year
mortality rates = pd.DataFrame({ year': forecasted kappa[ 'year']})

# Loop through each age group and calculate mortality rates
for age group in alpha x.keys():
# Calculate In(m x,t) = alpha_x + beta_x * kappa_t
In mortality rate = alpha_x[age_group] + beta x[ape group] * forecasted_kappa[ "kappa']

# Convert In(m_x,t) to m_x,t by exponentiating
mortality rates[age group] = np.exp(ln_mortality rate)

# Display the calculated mortality rates
print("Forecasted Mortality Rates (2012-2822):")
print(mortality rates)

# Error metrics comparison
error_metrics = {}
age groups = ["age 8 to 4", "age 5 to 8", "age 18 to 14", "age 15 to 19", "age 28 to 24"]

for age group in age proups:
# ARIMA model metrics
arima mae = mean_absolute error(actual mortality[apge proup], forecasted arima[age group])
arima mse = mean_squared error(actual mortality[age proup], forecasted arima[age pgroup])
arima_rmse = np.sqrt(arima_mse)

# Random Forest model metrics
rf_mae = mean_absolute error(actual_mortality[age group], forecasted rf[age group])




APPENDIX 2

Mortality rate data obtained from the UNICEF database.

age

1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022

Oto4
80.3891
84.1775
88.1863
91.8857
95.6638

98.761
100.142
100.2128
99.0299
96.8425
94.4676
92.5288
91.2257
90.2661
90.4731
91.3754
93.6366
94.4852
93.3302
90.2232
85.3867
79.9867
71.7441
65.8815
62.2907
60.1697
57.4929
55.7896
53.3732
52.3766
51.4317
49.0875
47.7291

5t09

8.4445
8.3933
8.3641
8.3498
8.3339
8.3257
8.3363
8.3576
8.3794
8.4326
8.489987
8.56886
8.654164
8.705526
8.755755
8.782592
8.736558
8.632428
8.431092
8.170743
7.842523
7.456319
7.037364
6.593729
6.198847
5.839784
5.520516
5.246018
5.007682
4.787394
4.560103
4.37943
4.198438

10to 14
4.8054
4.8654
4.9449

5.036
5.1395
5.2476
5.3683
5.4953
5.6313
5.7814

5.953954
6.133452
6.337658
6.545267
6.753374
6.970076
7.155676
7.308435
7.411885
7.46873
7.510008
7.519348
7.517214
7.527275
7.564396
7.567935
7.561792
7.537772
7.475269
7.379317
7.2456
7.126943
6.983709

15t019 20to 24

7.5121
7.938
8.3703
8.8096
9.2273
9.6331
10.0183
10.3629
10.656
10.8952
11.05685
11.17585
11.20967
11.15477
11.06051
10.94887
10.81633
10.69757
10.56303
10.42944
10.30601
10.20118
10.11209
10.05584
10.04416
10.03357
10.03434
9.956116
9.819549
9.590238
9.373231
9.155967
8.892184

60

14.4261
15.5039
16.6547
17.865
19.0828
20.2927
21.4207
22.4141
23.2528
23.8579
24.20503
24.30427
24.12254
23.72643
23.21959
22.60144
21.95066
21.28209
20.53645
19.81821
19.11457
18.4361
17.83652
17.24499
16.72752
16.28232
15.87698
15.49813
15.24032
14.9785
14.77508
14.59755
14.39649



