E OCTOON Y # BINDURA UNIVERSITY OF SCIENCE EDUCATION #### **FACULTY OF SCIENCE AND ENGINEERING** #### **DEPARTMENT OF CHEMISTRY** ## MAIN EXAMINATION PAPER COURSE: **INORGANIC CHEMISTRY II** **COURSE CODE:** **CH 202** **DURATION:** 2 HOURS #### **INSTRUCTIONS TO CANDIDATES** - 1. Answer QUESTION 1 and Two questions in SECTION A and Two from SECTION B. - 2. Each question should start on a fresh page and marks will be allocated as indicated. - 3. Each question carries 20 marks **QUESTION 1** (a) List four limitations of the valence bond theory. [4 marks] - (b) Explain why potassium and cesium, rather than lithium are used in photoelectric cells? - (c) Explain why the Lewis acidity of Boron halides follow the order BF₃<BCl₃< BBr₃<Bl₃ [3 marks] - (d) Give the systematic name for each of the following coordination compounds; - (i) $[Mn(NH_3)_5Cl]Cl_2$ [1 mark] (ii) Na₃Fe(CN)₆ [1 marks] (e) Explain why lanthanides occur in pairs in nature. [3 marks] (f) Explain the macrocyclic effect. [5 marks] ## SECTION A: ANSWER ANY TWO QUESTIONS FROM THIS SECTION ## **QUESTION 2** (a) Summarise and comment on the following major trends observed for group 15 elements (N, P, As, Sb, Bi). [20 marks] | Trend | Summary and Comments | | | | | | |--|----------------------|--|--|--|--|--| | Oxide basicity | [3 marks] | | | | | | | Hydrolysis of Flourides: | [3 marks] | | | | | | | Stabilization of the +3 oxidation state relative | [3 marks] | | | | | | | to +5 oxidation state | | | | | | | | Catenation | [2 marks] | | | | | | | Coordination number | [3 marks] | | | | | | | Multiple bond formation | [3 marks] | | | | | | | Thermal stabilities of hydrides and alkys | [3 marks] | | | | | | | compounds | | | | | | | #### **QUESTION 3** (a) When an alkali metal dissolves in liquid ammonia the solution can acquire different colours. Explain the reasons for this type of colour change and magnetic properties. [5 marks] - (b) Explain why beryllium and magnesium do not give colour to flame whereas other alkaline earth metals do so. [3 marks] - (c) Explain why hydroxides and carbonates of sodium and potassium are easily soluble in water while the corresponding salts of magnesium and calcium are sparingly soluble in water. [3 marks] - (d) Comment on each of the following observations: - (i) The mobilities of the alkali metal ions in aqueous solution are $Li^+ < Na^+ < K^+ < Rb^+ < Cs^+$. [2 marks] - (ii) Lithium is the only alkali metal to form a nitride directly. [3 marks] (e) Explain four significance functions of sodium, potassium, magnesium and calcium in biological system. [4 marks] ## **QUESTION 4** (a) Explain the structure and bonding in diborane. [10 marks] - (b) Explain why the catenation ability for Group 4 elements follow the order C>>Si ≈Ge> Sn≈Pb.[2 marks] - (c) List any three carbon nanomaterials. [3 marks] (d) Explain why the compound trimethylamine (CH₃)₃N and trisilylamine (SiH₃)₃N have similar formulae but have totally different structures. [5 marks] ## SECTION B: ANSWER ANY TWO QUESTIONS FROM THIS SECTION #### **QUESTION 5** - (a) Explain the inner and outer sphere reaction mechanisms. Include the relevant equations in your answer. [15 marks] - (b) Explain circumstances that lead to Metal Ligand Charge transfer (MLCT) bands in metal complexes. [5 marks] #### **QUESTION 6** (a) Determine the configuration, the number of unpaired electrons, and the ligand field stabilization energy as a multiple of Δ_0 or Δ_T . (i) [W(CO)₆] [5 marks] (ii) $[Co(NH_3)_6]^{3+}$ [5 marks] (b) Construct molecular orbital energy level diagrams for Fe^{III} ion in a high spin octahedral crystal field. Clearly show the relative positions of the metal, ligand and complex orbitals. Do placement of electrons in each case. [10 marks] # **QUESTION 7** - (a) Explain why the f-block elements are placed outside the body of the periodic table separately. [5 marks] - (b) Outline four uses of Lanthanoids. [4 marks] (c) Explain the cause and two consequences of lanthanoid contraction. [2 marks] (d) Briefly explain three methods that are used for lathanoid separation. [9 marks] #### **END OF EXAMINATION** # PERIODIC TABLE OF ELEMENTS | I DRIODIC TABLE OF | | | | | | | | والمتا | | | | | | | | | |--------------------------------|-------------------|---------------------|-----------------|-------------|----------|-------------|-------------|--------------|-------------|-------------|----------------|----------------|------------|-------------|-------------|-------------| | | | | | | | | | | | | | | | | | Noble | | | | | | | | | | | | | | | | | | gases | | Alkali | | | | | | | | | | | | | | | | | | metals | | | | | | | | | | | | | | Halo | ogens | Ÿ | | • | aline
irth | | | | | | | | | | | | | | | 18 | | | tals | | | | | | | | | | | | | | ¥ | 8A | | ¹ H | | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | He He | | 1.008 2 | A | | | | | | | | | | 3A | 4A | . 5A | 6A | 7A | 4.003 | | ³ Li ⁴ B | e | | | | | | | | | | 5 _D | ⁶ C | 7
N | 8
O | 9
F | Ne
Ne | | 6.941 9.01 | | | | | | | | | | | B
10,8 | | | 16,00 | | 20,18 | | 11 12 | ~ 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 1 <u>5</u> | 16_ | 17 | 18 | | Na M
22.99 24 | g s | 4 | 3 | _ | unsitic | - | | 10 | 11 | 12 | Al
26.98 | Si
28.01 | P
30.97 | S
32.07 | Cl
35.45 | Ar
39,95 | | 19 20 | 21 | V 22 | 23 | | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | | KC | a Sc | Ti | ²³ V | | Mn | Fe | Co
58,93 | Ni
58.69 | Cu
63.55 | Zn
65.38 | Ga | Ge | l As | Se
78.96 | Br | Kr | | 39.10 40. | | | | 52.00 | 54.94 | 55.85 | | . | _ | · | 69.72 | 72.59 | 74.92 | | 79.90 | 83.80 | | 37 Rb 38 | , ³⁹ Y | $\overset{40}{Z}$ r | Nb | Mo
Mo | 43
Tc | 44
Ru | 45
Rh | 46
D.d | 47
A a | 48
Cd | In | Sn Sn | Sb Sb | Te | 53
T | Xe Xe | | 35.47 87. | | 91,22 | 92,91 | 95,94 | (98) | 101.1 | 102.9 | Pd
106,4 | Ag
107.9 | Cd
112.4 | 114.8 | 118.7 | 121.8 | 127.6 | 126,9 | 131.3 | | 55 56
Cs B | 57 | 72
Hf | 73
Ta | 74
W | 75
Re | 76 | 77 | 78 | 79
A | 80 | 81 | 82
To 1 | | 84 | 85 | 86 | | Cs B | 1 La
3 138.9 | H.I
178.5 | 1 a
180.9 | VV
183.9 | 186,2 | Os
190,2 | Ir
192,2 | Pt
195,1 | Au
197.0 | Hg
200.6 | T1
204.4 | Pb
207.2 | | Po
(209) | At
(210) | Rn
(222) | | | 89 ** | 103 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | | | | , | <u> </u> | | | Fr R | a Ac [™] | Rf | DЬ | Sg | Bh | Hs | Mt | Uun | Uuu | Uub | | กาค | tals | | 130 | nmetals | | (223) 22 | 6 (227) | | | | | | | | | | | 1110 | Lan | | 110 | Jiiiii Cais | * Lanthanides **Actinides | 58
Ce
140.1 | 59
Pr
140.9 | 60
Nd
144.2 | 61
Pm
(145) | 62
Sm
150.4 | 63
Eu
152.0 | 64
Gd
157.3 | 65
Tb
158,9 | Dy
162,5 | 67
Ho
164,9 | 68
Er
167.3 | 69
Tm
168.9 | 70
Yb
173,0 | 71
Lu
175.0 | |-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|--------------------|-------------------|--------------------| | 90
Th
232.0 | 91
Pa
(231) | 92
U
238,0 | 93
Np
(237) | 94
Pu
(244) | 95
Am
(243) | 96
Cm
(247) | 97
Bk
(247) | 98
Cf
(251) | 99
Es
(252) | 100
Fm
(257) | 101
Md
(258) | No
(259) | 103
Lr
(260) |