BINDURA UNIVERSITY OF SCIENCE EDUCATION

ENGINEERING AND PHYSICS DEPARTMENT

PH101: MECHANICS AND OSCILLATIONS

= AUG 2024

DURATION: THREE HOURS

Answer ALL parts of Section A and any THREE questions from Section B. Section

A carries 40 marks and Section B carries 60 marks.

SECTION A

- 1 (a) (i) Use dimensional analysis to show that the expression $v = v_0 + at$ is dimensionally correct, where v and v_0 represent velocities, a is acceleration, and t is a time interval.
 - (ii) Suppose we are told that the acceleration a of a particle moving with uniform speed v in a circle of radius r is proportional to some power of r, say r^n , and some power of v, say v^m . Determine the values of n and m and write the simplest form of an equation for the acceleration.
 - (b) A person walks 3 km due East and then 2 km due North. What is his displacement vector? [5]
 - (c) Find the sum of the following two vectors: $\vec{A} = 8\vec{i} + 3\vec{j}$ $\vec{B} = -5\vec{i} 7\vec{j}$
 - (d) A block of mass m is pushed up a rough inclined plane of angle θ by a constant force \vec{F} parallel to the incline, as shown in Fig. 1. The displacement of the block up the incline is \vec{d} . Calculate the work done for $m=2\ kg, \mu_k=0.5, \quad \theta=30^\circ, F=20N,$ and d=5m.

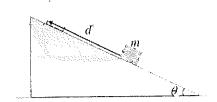


Figure 1.1

e) A disk of mass M=8~kg and radius R=0.5 m accelerates about its massless axle from rest to an angular speed $\omega=8.5~rad/s$ in a time $\Delta t=2~s$, see Figure 2.

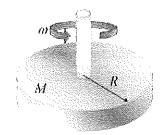


Figure 2

Find: [5] the angular momentum of the disk (i) the required constant torque used for this acceleration. [5] (ii) A car accelerates uniformly from rest to a speed of 100 km/h in 18 s. f) [3] Find the acceleration of the car. (i) [3] Find the distance that the car travels. (ii) If the car brakes to a full stop over a distance of 100 m, then find its [3] (iii) uniform deceleration.

Section B

2 Figure 2.1 shows the following three vectors.

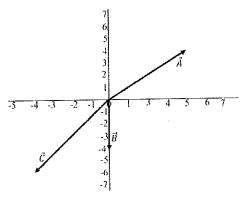


Figure 2.1

Find

(a) the vector sum \vec{R} of these three vectors?

[10]

[5] the magnitude of $\vec{R} \cdot \vec{R}$? (b) [5] the angle measured from the +x direction, (θ)? (c) A ball thrown from the top of a building has an initial speed of 20 m/s 3 at an angle of 30° above the horizontal. The building is 40 m high and the ball takes time \acute{t} before hitting the ground, see the Fig. 3.1. Take $g = 10 m/s^2.$ [3] Find the time t_1 for the ball to reach its highest point. (a) [3] How high will it rise? (b) [3] How long will it take to return to the level of the thrower? (c) [4] Find the time of flight \hat{t} . (d) What is the horizontal distance covered by the ball during this time? [3] (e) What is the velocity of the ball before striking the ground? [7] (f)

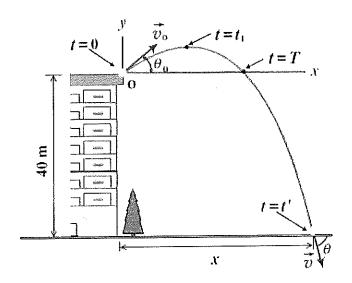
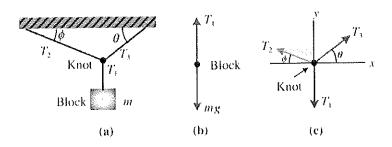


Figure 3.1

A block of mass m=21~kg hangs from three cords as shown in part (a) of Figure. 4.1. Taking $\sin\theta=4/5$, $\cos\theta=3/5$, $\sin\phi=5/13$, and $\cos\phi=12/13$, find the tensions in the three cords.



Fugure 4.1b) Discuss frictional force.

c)

6

[5]

A particle oscillates with a simple harmonic motion along the x axis. Its displacement

from the origin varies with time according to the equation:

$$x = (2m)\cos(0.5\pi t + \pi/3)$$

where t is in seconds and the argument of the cosine is in radians. Find:

a) the amplitude, frequency, and period of the motion. [6]

the velocity and acceleration of the particle at any time.

both the maximum speed and acceleration of the particle. [4]

the displacement of the particle between t=0 and t=2s. [6]

A block of mass m=400~g is attached to a light spring of force constant $k_H=10~Nm^{-1}$, see Figure 6.1 (a). The block is pushed against the spring from x=0 to $x_i=-10cm$, see Figure 6.1 (b), and then released to oscillate on a horizontal frictionless surface.

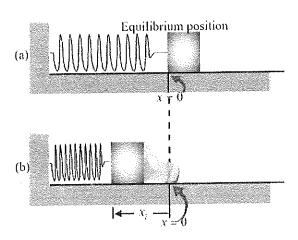


Figure 6.1

- a) Find:
- b) the angular frequency and the period of the block-spring system.
- [6] [6]
- c) the maximum speed and maximum acceleration of the block.
 - the position, speed, and acceleration of the block at any time.
- [8]

MECHANICS FORMULA SHEET

0.1: Physical Constants

Speed of light	e	$3 \times 10^8 \; \mathrm{m/s}$
Planck constant	b	$6.63 \times 10^{-34} \mathrm{J s}$
	hc	1242 eV-mu
Gravitation constant	G	$6.67 \times 10^{-11} \text{ m}_{\odot}^3 \text{ kg}^{-1} \text{ s}^{-2}$
Boltzmann constant	i:	$1.38 imes 10^{-23} \mathrm{J/K}$
Molar gas constant	R	8,314 J/(mol K)
Avogadro's number	N_{Λ}	$6.023 imes 10^{23} ext{ mol}^{-1}$
Charge of electron	t:	$1.602 \times 10^{-19} \text{ C}$
Permeability of vac-	μ_0	$4\pi \times 10^{-7} \ { m N/A^2}$
18(11))		
Permittivity of vacuum	Co	$8.85 \times 10^{-12} \text{ F/m}$
Coulomb constant	1 1000	$9 \times 10^9 \; \mathrm{N} \; \mathrm{m}^2/\mathrm{C}^2$
Faraday constant	T"	96485 C/mol
Mass of electron	111,	$9.1 \times 10^{-34} \text{ kg}$
Mass of proton	m_p	1.6726 × 10 ⁻²⁷ kg
Mass of neutron	m_n	$1.6749 \times 10^{-27} \text{ kg}$
Atomic mass milt	u	$1.66 \times 10^{-27} \text{ kg}$
Atomic mass unit	11	$931.49~{ m MeV/c^2}$
Stefan-Boltzmann	a	$-5.67 \times 10^{-8} \text{ W/(m}^2 \text{ K}^4)$
constant.		
Rydberg constant	R_{∞}	$1.097 \times 10^{7} \ \mathrm{m}^{-1}$
Boln magneton	μ_B	$9.27 \times 10^{-24} \text{ J/T}$ $0.529 \times 10^{-10} \text{ m}$
Boln radius	ttu	0.529 × 10 ^{− 10} m
Standard atmosphere	atm	$1.01325 imes 10^5$ Pa
Wien displacement	b	2.9×10^{-3} m K
•		

1.1: Vectors

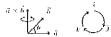
constant

Notation: $\vec{a} = a_r \hat{i} + a_n \hat{j} + a_z \hat{k}$

Magnitude: $u = |\vec{a}| + \sqrt{a_x^2 + a_y^2 + a_z^2}$

Dot product: $\vec{u} \cdot \vec{b} = a_1 b_2 + a_0 b_y + a_2 b_2 = ab \cos \theta$

Cross product:



$$\begin{aligned} |\vec{a} \times \vec{b}| &= (a_y b_z - a_z b_\theta) \hat{i} + (a_z b_y - a_x b_z) \hat{j} + (a_z b_y - a_y b_x) k \\ |\vec{a} \times \vec{b}| &= ob \sin \theta \end{aligned}$$

1.2: Kinematics

Average and Instantaneous Vel. and Accel.:

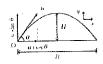
$$\begin{split} \vec{v}_{\rm av} &= \Delta \vec{v}/\Delta t, & \vec{v}_{\rm inst} &= d\vec{r}/dt \\ \vec{u}_{\rm av} &= \Delta \vec{v}/\Delta t & \vec{u}_{\rm inst} &= d\vec{v}/dt \end{split}$$

Motion in a straight line with constant a:

$$v = a + at, \quad s = at + \frac{1}{2}at^2, \quad v^2 \stackrel{s}{\longrightarrow} a^2 - 2as$$

Relative Velocity: $\vec{v}_{A/B} = \vec{v}_A - \vec{v}_B$

Projectile Motion:



$$\begin{split} x &= nt\cos\theta, \quad y &= ut\sin\theta - \frac{1}{2}yt^2 \\ y &= x\tan\theta - \frac{g}{2u^2\cos^2\theta}r^2 \\ T &= \frac{2u\sin\theta}{g}, \quad R - \frac{u^2\sin2\theta}{q}, \quad H = \frac{u^2\sin^2\theta}{2g} \end{split}$$

1.3: Newton's Laws and Friction

Linear momentum: $\vec{p} = m\vec{v}$

Newton's first law: inertial frame.

Newton's second law: $\vec{F} = \frac{d\vec{p}}{dt}$. $\vec{F} = m\vec{a}$

Newton's third law: $\vec{F}_{AB} = -\vec{F}_{BA}$

Frictional force: $f_{\rm statle, \, max} = \mu_s N_s - f_{\rm kinetic} = \mu_k N$

Banking angle: $\frac{v^2}{eg} = \tan \theta, \frac{v^2}{eg} = \frac{\mu + \tan \theta}{1 + \mu \tan \theta}$

Centripetal force: $F_c = \frac{mc^2}{\ell}$, $u_c = \frac{c^4}{\ell}$

Pseudo force: $\vec{F}_{pseudo} = -md_0$, $\vec{F}_{contribugal} = -\frac{mr^2}{\epsilon}$

Minimum speed to complete vertical circle:

$$v_{\mathrm{min, hottom}} = \sqrt{5gl_x} - v_{\mathrm{min, top}} = \sqrt{gl}$$

Conical pendulum: $T=2\pi\sqrt{\frac{\alpha_{\rm train}}{r}}$

1.4: Work, Power and Energy

Work:
$$W = \vec{F} \cdot \vec{S} = FS \cos \theta$$
, $W = \int \vec{F} \cdot d\vec{S}$

Kinetic energy:
$$K = \frac{1}{2}mv^2 - \frac{p^2}{2m}$$

Potential energy:
$$F = -\partial U/\partial x$$
 for conservative forces.

$$U_{\rm gravitational} = mgh$$
, $U_{\rm spring} = \frac{1}{2}kx^2$

Work done by conservative forces is path independent and depends only on initial and final points: $\int \vec{F}_{\text{conservative}} \cdot d\vec{r} = 0$.

Work-energy theorem: $W = \Delta K$

Mechanical energy: E = U + K. Conserved if forces are conservative in nature.

Power
$$P_{av} = \frac{\Delta W}{\Delta t}$$
. $P_{inst} = \vec{F} \cdot \vec{n}$

1.6: Rigid Body Dynamics

Angular velocity:
$$\omega_{\rm av} = \frac{\Delta \theta}{\Delta t}, \quad \omega = \frac{\mathrm{d} \theta}{\mathrm{d} t}, \quad \theta = \vec{\omega} \otimes \vec{r}$$

Angular Accel.:
$$\alpha_{\rm ov} \sim \frac{\Delta \omega}{M}, \quad \alpha = \frac{\mathrm{d}\omega}{\mathrm{d}t}, \quad \vec{a} = \vec{\alpha} \times \vec{r}$$

Rotation about an axis with constant α :

$$\omega = \omega_0 + \alpha t, \quad \theta = \omega t + \tfrac{1}{2} \alpha t^2, \quad \omega^2 - \omega_0^2 = 2\alpha \theta$$

Moment of Inertia: $I = \sum_i m_i r_i^{(2)}, \quad I = \int r^2 \mathrm{d}m$

Rotation about an axis with constant n:

$$\omega = \omega_0 + \alpha t, \quad \theta = \omega t + \tfrac{1}{2} \alpha t^2, \quad \omega^2 - \omega_0^2 = 2\alpha \theta$$

Moment of Inertia:
$$I = \sum_{i} m_{i} r_{i}^{2}$$
, $l = \int r^{2} dm$

Theorem of Parallel Axes: $I_{\parallel} = I_{ros} + md^2$

Theorem of Perp. Axes: $I_x = I_x + I_y$

Radius of Gyration: $k = \sqrt{I/m}$

Angular Momentum: $\vec{L} = \vec{r} \times \vec{p}, \quad \vec{L} = I \vec{\omega}$

Torque:
$$\vec{r} = \vec{r} \times \vec{F}$$
, $\vec{\tau} = \frac{d\vec{E}}{dt}$, $\vec{r} = I\alpha$

1.5: Centre of Mass and Collision

Centre of mass:
$$x_{\text{cm}} = \frac{\sum x_i m_i}{\sum m_i}$$
, $x_{\text{cm}} = \frac{\int i dm}{\int dm}$

CM of few useful configurations:

1. m_1 , m_2 separated by r:

2. Triangle (CM \equiv Centroid) $y_{\rm e}\sim\frac{h}{3}$

3. Semicircular ring: $y_c = \frac{2r}{\pi}$

4. Semicircular disc: $y_c = \frac{4c}{3\pi}$

5. Hemispherical shell: $y_c = \frac{v}{2}$

6 Solid Hemisphere: $y_c = \frac{3r}{8}$

 Cone: the height of CM from the base is h/4 for the solid cone and h/3 for the hollow cone.

Motion of the CM: $M = \sum m_i$

$$\vec{v}_{\rm cm} = \frac{\sum m_i \vec{v}_i^t}{M}, \quad \vec{p}_{\rm cm} = M \vec{v}_{\rm cm}, \quad \vec{d}_{\rm cm} = \frac{\vec{F}_{\rm ext}}{M}$$

Impulse: $\vec{J} = \int \vec{F} \, dt = \Delta \vec{p}$

Collision:

Before collision , After collision

Momentum conservation: $m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$ Elastic Collision: $\frac{1}{2}m_1v_1^{-2} + \frac{1}{2}m_2v_2^{-2} = \frac{1}{2}m_1v_1'^{-2} + \frac{1}{2}m_2v_2'^{-2}$ Coefficient of restitution:

$$e = \frac{-(v_1' - v_2')}{v_1 - v_2} = \left\{ \begin{array}{ll} 1, & \text{completely elastic} \\ 0, & \text{completely in-elastic} \end{array} \right.$$

If $v_2 = 0$ and $m_1 \ll m_2$ then $v_1' = -v_1$. If $v_2 = 0$ and $m_4 \gg m_2$ then $v_2' = 2v_1$.

Elastic collision with $m_1=m_2$: $v_1'=v_2$ and $v_2'=v_1$.

Conservation of \vec{L} : $\vec{r}_{\rm ext} = 0 \implies \vec{L} = {\rm const.}$

Equilibrium condition: $\sum F = \vec{0}$, $\sum \tau' = \vec{0}$

Kinetic Energy: $K_{\rm tot} = \frac{1}{2}I\omega^2$

Dynamics:

$$\begin{split} \vec{r}_{\rm em} &= I_{\rm cm} \vec{\alpha}, \qquad \vec{F}_{\rm ext}^{\prime} = m \vec{d}_{\rm em}, \qquad \vec{p}_{\rm cm} = m \vec{r}_{\rm em} \\ K &= \frac{1}{2} m r_{\rm em}^2 + \frac{1}{2} I_{\rm cm} \vec{\omega}^2, \quad \vec{f}_{\rm e} \approx I_{\rm em} \vec{\omega} + \vec{r}_{\rm em} \times m \vec{r}_{\rm em} \end{split}$$

1.7: Gravitation

Gravitational force: $F = G \frac{m_1 m_2}{r^2}$

Potential energy: $U=-\frac{GMm}{r}$

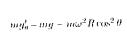
Gravitational acceleration: $g = \frac{GM}{R^2}$

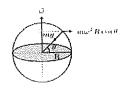
Variation of g with depth: $g_{\rm in-irb} \approx g \left(1 - \frac{\hbar}{R}\right)$

Variation of g with height: $y_{\text{outside}} \approx g \left(1 - \frac{2h}{R}\right)$

Effect of non-spherical earth shape on $g_{\rm int~pole} \geq g_{\rm int~equator} \; (\odot R_{\rm v} + R_{\rm p} \approx 21 \; {\rm km})$

Effect of earth rotation on apparent weight:





Orbital velocity of satellites $v_b = \sqrt{\frac{GM}{R}}$

Escape velocity: $v_r = \sqrt{\frac{2GM}{R}}$

Kepler's laws:

First: Elliptical orbit with sun at one of the focus. Second: Areal velocity is constant. ($\because d\vec{L}/dt = 0$). Third: $T^2 \propto a^3$. In circular orbit $T^2 = \frac{4a^2}{GM}a^3$.

1,8: Simple Harmonic Motion

Hooke's law: F > kr (for small elongation e.)

Acceleration: $a = \frac{\alpha^2 x}{4 d^2} = -\frac{4}{m} x = -\omega^2 c$

Time period: $T = \frac{4\pi}{3} + 2\pi \sqrt{\frac{m}{4}}$

Displacement: $v + A \sin(\omega t + \phi)$

Velocity: $v > A\omega \cos(\omega t + \phi) = \pm \omega \sqrt{A^2 - r^2}$

Potential energy: $U \geq \frac{4}{2}k\,\epsilon^2$

Kinetic energy $K = \frac{1}{2}mv^2$

Total energy: $E = U + K = \frac{1}{3} m \omega^2 A^2$

Simple pendulum: $T + 2\pi \sqrt{\frac{t}{t}}$

Physical Pendulum: $T=2\pi\sqrt{\frac{I}{repl}}$

END OF EXAM

Torsional Pendulum $T = 2\pi \sqrt{\frac{7}{4}}$

Springs in series: $\frac{1}{k_{r0}} + \frac{1}{k_1} + \frac{1}{k_2}$

 $\frac{k_1}{\sqrt{mn}} = \frac{k_2}{\sqrt{mn}}$

Springs in parallel: $k_{\rm eq} = k_1 + k_2$

Superposition of two SHM's:

 $x_1 = A_1 \sin \omega t$, $x_2 = A_2 \sin(\omega t + \delta)$ $x = x_1 + x_2 = A\sin(\omega t + r)$

$$\begin{split} A &= \sqrt{{A_1}^2 + {A_2}^2 + 2A_1A_2\cos\delta}\\ \tan\epsilon &= \frac{A_2\sin\delta}{A_1 + A_2\cos\delta} \end{split}$$