BINDURA UNIVERSITY OF SCIENCE EDUCATION

MT108

BACHELOR OF SCIENCE EDUCATION HONOURS DEGREE

LINEAR ALGEBRA

Time: 3 hours

Candidates may attempt ALL questions in Section A and at most TWO questions in Section B. Each question should start on a fresh page.

SECTION A (40 marks)

Candidates may attempt ALL questions being careful to number them A1 to A7.

- A1. Find the parametric equation of a line in space which passes through the points P(1,0,-1) and Q(3,-2,-3). [4]
- **A2.** Let $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$ be vectors in \mathbb{R}^2 . Show that the Weighted Euclidean inner product $\langle \mathbf{u}, \mathbf{v} \rangle = 3u_1v_1 + 2u_2v_2$ satisfies all the inner product. [6]
- A3. (a) Define the term linear combination of vectors. [2]
 - (b) Given the vectors $\mathbf{u} = (1, 2, -1)$ and $\mathbf{v} = (6, 4, 2)$, show that $\mathbf{w} = (9, 2, 7)$ is a linear combination of \mathbf{u} and \mathbf{v} .
- **A4.** Let $A = \begin{bmatrix} 3 & 2 & -1 \\ 1 & 6 & 3 \\ 2 & -4 & 0 \end{bmatrix}$
 - (a) Find the adjoint of the matrix A, [5]
 - (b) Hence or otherwise find A^{-1} , the inverse of matrix A. [2]
- A5. Find the solution of the following system of linear equations using Gauss elimination method.

$$x_1 + 2x_2 + 3x_3 = 5,$$

$$2x_1 + 5x_2 + 3x_3 = 3,$$

$$x_1 + 8x_3 = 17.$$

[6]

A6. (a) Verify the Cayley Hamilton theorem using A =[4]

- (b) Hence find A^4 using the Cayley Hamilton theorem. [2]
- **A7.** Prove that $||v_1 + v_2 + ... + v_n||^2 = ||v_1||^2 + ||v_2||^2 + ... + ||v_n||^2$ given that the set [5] $S = \{v_1, v_2...v_n\}$ form an orthogonal basis.

SECTION B (60 marks)

Candidates may attempt TWO questions being careful to number them B8 to B10.

- (a) Let A be a non singular matrix. Give a formular connecting A^{-1} , det (A) and adj
 - (b) Find the solution of the linear system:

$$2x_1 + 3x_2 - x_3 = 4,$$

$$x_1 - 2x_2 + x_3 = 6,$$

$$x_1 - 12x_2 + 5x_3 = 10,$$

using Cramer's rule.

(c) Find x such that $\det(A) = 0$ if

$$A = \begin{bmatrix} 1 & x & x \\ -x & -2 & x \\ x & x & 3 \end{bmatrix}.$$

[8]

[8]

(d) Use Gauss elimination method to find a solution to the following system of inhomogeneous simultaneous linear equations.

$$\begin{array}{rcl} x_1 + x_2 + 2x_3 & = & 1, \\ 2x_1 - x_2 + x_4 & = & -2, \\ x_1 - x_2 - x_3 - 2x_4 & = & 4, \\ 2x_1 - x_2 + 2x_3 - x_4 & = & 0. \end{array}$$

[12]

- **B9.** (a) Find area of a triangle with the vertices M(2,1,0), N(3,-1,1) and R(1,0,2). [8]
 - (b) Given that $\mathbf{u} = 3\mathbf{i} 2\mathbf{j} + 6\mathbf{k}$ and $\mathbf{v} = 2\mathbf{i} + 3\mathbf{j} 4\mathbf{k}$, find $\mathbf{u} \times \mathbf{v}$ and a unit vector perpendicular to the plane containing the vectors **u** and **v**. 6
 - (c) Prove that if u and v are vectors in a real inner product space then, $|| u + v || \le || u || + || v ||$. [6]
 - (d) Let $A = \begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix} \in M_{2\times 2}$. Show that $\| \frac{1}{\|A\|} A \| = 1$. [5]

[5]

- (e) Find the area of the parallelogram with vectors $\mathbf{u} = 2\mathbf{i} \mathbf{j} + 2\mathbf{k}$ and $\mathbf{v} = 3\mathbf{i} + 4\mathbf{j} + \mathbf{k}$ as sides. [5]
- B10. (a) (i) Define the term linear independence of vectors. [2]
 - (ii) Determine whether the vectors $\mathbf{v}_1 = (1, 2, -3), \mathbf{v}_2 = (1, -3, 2)$ and $\mathbf{v}_3 = (2, -1, 5)$ in \mathbb{R}^3 are linearly dependent or not. Justify your answer. [6]
 - (b) Show that W is not a subspace of $V = \mathbb{R}^3$ where W consists of those vectors whose first component is non negative, that is, $W = \{(a, b, c) : a \ge 0\}$. [5]
 - (c) Determine whether the vectors (1,1,1), (1,2,3) and (2,-1,1) spans \mathbf{R}^3 . [5]
 - (d) Find the dimension and a basis of the solution space W of the following homogenous system:

$$x + 2y + 2z - s + 3t = 0$$
$$x + 2y + 3z + s + t = 0$$
$$3x + 6y + 8z + s + 5t = 0.$$

x + 6y + 8z + s + 5t = 0. [7]

(e) Let $B = \begin{pmatrix} 0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix}$

Find the rank and nullity of matrix B.

END OF QUESTION PAPER