BINDURA UNIVERSITY OF SCIENCE EDUCATION FACULTY OF SCIENCE AND ENGINEERING

11 2044

[10]

DEPARTMENT OF ENGINEERING AND PHYSICS

PROGRAMME: BSc HONOURS AGRICULTURAL ENGINEERING PART II

AEH207: ENGINEERING HYDROLOGY

DURATION: 3 HOURS

TOTAL MARKS: 100

INSTRUCTIONS TO CANDIDATES Answer any FOUR (4) questions. Each question carries 25 marks.

Question 1 a) Briefly explain the impact of overexploitation of groundwater resources in [10] human settlements. b) Describe any three (3) methods to estimate potential evapotranspiration [15] Question 2 a) Explain the meaning of the following terms as applicable to engineering hydrology: [2] i. Infiltration capacity [2] ii. Runoff flux [2] iii. Unsaturated zone [2] jv. Isohyet [2] v. Saturated overland flow b) Distinguish between variable source areas concept and partial areas concept c) A local real estate company is planning to construct new residential houses on a plot 280ha situated close to Astra Campus. The site will consist of 70% single family units and 30% asphalt and concrete pavement. Preliminary investigations indicate a slope of 3.5% and a maximum flow path of 3000m. Hydrological data obtained by the Engineering hydrologist indicate a rainfall intensity of 75mm/hr. Estimate the peak runoff rate for a 20-yr storm at this [10] new establishment. Question 3 a) Outline five (5) factors affecting evaporation in arable lands. [15] b) Describe the effect of anthropogenic activities on the hydrologic cycle

Question 4

a) A new housing estate consists of 30% road (asphalt), 20% roofs, 10% parea (concrete) and the rest garden. What is the approximate runoff	arking
coefficient? (Show working)	[5]
b) Suggest measures to reduce overexploitation of groundwater resour	ces in
Southern Africa.	[8]
c) Explain the significance of the water balance	[12]

Question 5

a) An Engineering hydrologist was contracted to design a hydraulic structure to contain recurrent flooding in Muzarabani. Hydrological data obtained indicated an average rainfall intensity of 175 mm/hr in a catchment with an area of 50 km². The runoff coefficient for a 3-hour storm event in the context of rational method is 0.90. Determine whether a hydraulic structure designed to withstand a flood with peak discharge of no greater than 1600 m³/s would have failed during a recent flood event.

b) Describe three (3) mechanisms of lifting air masses. [9]

c) Outline the procedure of measuring infiltration capacity. [10]

Question 6

a) A well is located in an aquifer with a conductivity of 14.9 m/day and a storativity of 0.0051. The aquifer is 20.1 m thick and is pumped at a rate of 2725 m³/day. What is the drawdown at a distance of 7.0 m from the well after 1 day of pumping? [12]

b) State and describe three methods of discharge measurement in surface water resources [13]

AppendixValues of the function W(u) for various values of u

u.	W(u)	u	W(u)	(I	W(u)	u	W(u)
1 × 10 ⁻¹⁰	22.45	7 × 10 ⁻⁶	15.90	4×10^{-5}	9,55	1×10^{-2}	4.04
2	21.76	8	15.76	5	9.33	2	3.35
3	21.35	9	15,65	6	9.14	3	2.96
4	21.06	1×10^{-7}	15,54	7	8.99	4	2.68
 €	20.84	2	14.85	8	8.86	5	2.47
	20.66	3	14.44	9	8.74	6	2.30
b 7	20.50	4	14.15	1×10^{-4}	8.63	7	2.15
v.	20.37	5	13.93	2	7.94	8	2.03
8	20.25	6	13.75		7.53	9	1.92
1 × 10 ⁻⁹	20.25	7	13.60	3 4	7.25	1×10^{-1}	1.823
1 / 10	19.45	8	13.46	5	7.02	2	1.223
Ľ	19.45	9	13.34	6	6.84	3	0.906
3.	18.76	1 × 10 ⁻⁶	13.24	7	6.69	4 .	0.702
4	18.54	2	12.55	8	6.55	5	0,560
5		3	12.14	9	6.44	6	0.454
6	18.35) 4	11.85	1×10^{-3}	6.33	7	0.374
<u> </u>	18.20	5	11.63	2	5.64	8	0.311
8	18.07		11.45	3.	5.23	ŋ	0.260
9	17.95	6 7	11.29	4	4.95	1×10^{9}	0.219
1×10^{-8}	17.84		11.16	5	4.73	2	0.049
2	17.15	8		6	4,54	3	0.013
В	16.74	9	11,04	0 7	4.39	4	0.004
4	16.46	1×10^{-5}	10.94	8	4.26	5	0,001
5	16.23	2	10,24			-F	2,170
6	16.05	3	9.84	9	4.14		

END OF QUESTION PAPER!!!