Bindura University of Science Education

Faculty of Science Education

- JAN 2025

Science and Mathematics Education Department

Programme: HBSc Ed (Mathematics)

Course: MT320: Algebra

Duration: Three hours

Semester Examinations

Instructions to candidates

- (i) Answer all questions in Section A and two questions from Section B.
- (ii) Begin each question on a fresh page.

SECTION A (40 marks)

Candidates may attempt ALL questions being careful to number them A1 to A5.

A1. Define the following (a) An equivalence relation (b) Homomorphism of a group (c) A ring	[2] [2] [7]
A2. Distinguish between(a) Group and a field(b) Bijection and injection	[8] [4]

A3. Let A be a set of non-zero integers and let \sim be a relation on $A \times A$ defined by	
$(a_1, a_2) \sim (b_1, b_2)$ whenever $a_1 b_2 = a_2 b_1$. Show that \sim is an equivalence relation.	[8]

A4. Suppose
$$(G,*)$$
, where $G = \{1,-1,i,-i\}$ and $H = \{-1,-i\}$. List the left cosets of H in G. [4]

A5. Let H and K be subgroups of G. Show that
$$H \cap K$$
 is also a subgroup of G. [5]

SECTION B (60 marks)

Candidates may attempt TWO questions being careful to number them B6 to B8

B6. (a) (i) Draw a Cayley table of
$$(Z_5, +)$$
 [5] (ii) Is $(Z_5, +)$ a group? Give reasons. [4]

(iii) State the neutral element of $(Z_5, +)$	[2]
(b) Show that the inverse element of a group is unique.	[5]
(c) Define a mapping and give two types of mappings.	[4]
(d) If S is the set of all 2 × 2 matrices of the form $\begin{pmatrix} a & b \\ 2h & a \end{pmatrix}$	where $a, b \in \mathbb{R}$. Show that S forms
a group under addition of matrices.	[10]
B7. (a) Define the terms	
(i) Homomorphism of a group(ii) Monomorphism of a group	[2] [2]
(iii) Isomorphism of a group	[2]
(b) Let $(G, *)$ and $(H, +)$ be groups	
(i) Define $(G \times H, \Delta)$ the direct product of G and H	[4]
(ii) Show that $(G \times H, \Delta)$ is a group	[10]
(iii)show that G and H are abelian if and only if G	\times <i>H</i> is abelian [6]
(c) Prove that $\theta: R \to S$ is a ring homomorphism then $ker\theta$	is an ideal of R [4]
B8 . (a) Let G be any group and $H \le G$. We say that x is congruent $y \pmod{H}$ if $x^{-1}y \in H$, where $x, y \in G$. Prove that the congruence relation in G.	to y modulo H (written $x \equiv$
(b) Suppose $\Im\sqrt{2} = \{m + n\sqrt{2}; m, n \in \mathbb{Z}\}$, then show that $\Im\sqrt{2}$	$\overline{2}$ is a homomorphism of a ring [10]
(c) let K be a ring of all 2 × 2 matrices of the form $\begin{pmatrix} y & x \\ -x & y \end{pmatrix}$	where $x,y \in \mathbb{R}$ and we have a

 $\wp: \mathbb{C} \Rightarrow K$ $x + iy \Rightarrow \begin{pmatrix} y & x \\ -x & y \end{pmatrix}$

Show that \wp is an isomorphism.

field of complex numbers. Define a mapping

[10]

(a) Let $f: G \to H$ be a homomorphism then show that ker (f) is a subgroup of G [4]

END OF PAPER