BINDURA UNIVERSITY OF SCIENCE EDUCATION

PHYSICS AND MATHEMATICS DEPARTMENT

PH101: MECHANICS AND OSCILLATIONS
DURATION: THREE HOURS

Answer ALL parts of Section A and any THREE questions from Section B. Section A carries 40 marks and Section B carries 60 marks.

SECTION A

1. a A force acting on an object varies with x as shown in Figure. 1.1. Find the work done [5] by the force when the object undergoes a displacement from x = 0 to x = 7m.

Figure 1.1: Question 1. a.

b. Figure 1.2 is a x(t) plot for an elevator cab that is initially stationary, then moves [7] upward (which we take to be the positive direction of x), and then stops. Plot v(t)

Figure 1.2: Question 1. b.

- c. A person walks 3 km due east and then 2 km due north. What is his displacement [7] vector?
- d. A wheel accelerates uniformly from rest to an angular speed of 25 rad/s in 10 s. [4] Find the angular acceleration of the wheel.
- e. A particle moves with a constant speed v in a circular orbit of radius r, see the Figure 1.3. Given that the magnitude of the acceleration a is proportional to some power of r, say r^m , and some power of v, say v^n then determine the powers of r and v.

Figure 1.3: Question 1. e.

f. The equation giving the position of a freely falling body is given by equation (1.1) [3]

$$x = v_0 t + \frac{1}{2} g t^2 \tag{1.1}$$

Use dimensional analysis to show that equation (1.1) is dimensionally correct, where x is the position, v_0 the initial speed, g is the acceleration due to gravity and t the time interval.

- g. When startled, a cat will jump upward. Suppose it rises 0.544 m in the first 0.200 s.
 - i. What is its initial speed as it leaves the ground?

[3]

ii. What is its speed at the height of 0.544 m?

[3]

iii. What is the highest height reached by the cat?

[3]

SECTION B

2. a Amass hangs from a massless string of length ℓ . Conditions have been set up so that the mass swings around in a horizontal circle, with the string making a constant angle θ with the vertical (see Figure. 2.1). Show that the frequency ν of oscillation

is given by
$$v = f(\theta) \sqrt{\frac{g}{l}}$$

Figure 2.1: Question 2. a.

where f is a dimensionless function of the dimensionless variable θ .

b. An engine produces 42.5 kW.

Quantit	System 1:	System	Ratio:
V	British	2: SI	British/SI

Page 2 of 4

Mass	slug	kilogram	14.6
Length	foot	metre	0.3048
Time	second	second	1.0

i. What is the corresponding value in horsepower? 1 horsepower = 550 foot pound-force/second [8]

ii. What is the conversion factor?

[2]

3. a What is the angle ϕ between $\vec{A}=3.0\vec{\imath}-4.0\vec{\jmath}$ and $\vec{B}=-2.0\vec{\imath}+3.0\vec{\jmath}$?

[9]

b. i. For a particle moving with constant acceleration a in a straight line, show that [6] its velocity v at time t is given by equation (3.1)

$$\therefore v^2 = v_0^2 + 2a(x - x_0)$$
 (3.1)

where v_0 is its initial velocity and $x-x_0$ is the displacement.

- c. ii. How much force is needed to give a 20,000 kg heavy loaded truck on a levelled [5] track an acceleration of 1.5 ms^{-2} , and what is the force exerted by the track on the truck?
- 4. A reference line in a spinning disk has an angular position given by equation (4.1):

$$\theta = 3t^2 - 12t + 9 \tag{4.1}$$

where θ is in radians and t is in seconds.

b. Find angular velocity ω and angular acceleration a as a function of time.

[6]

c. Find the times when the angular position θ and the angular velocity ω become zero.

[10

[4]

d. Describe the rotational motion of the disk for $t \ge 0$.

1

]

- 5. a A block of mass m = 21 kg hangs from three cords as shown in part of Figure. 5.1. [15]
 - . Taking $\sin\theta$ =4/5, $\cos\theta$ =3/5, $\sin\varphi$ =5/13, and $\cos\varphi$ =12/13, find the tensions in the three cords.

Figure 5.1: Question 5. a.

b. A particle moves over a path such that the components of its position with respect [5] to an origin of coordinates are given as a function of time by:

$$x = -t^2 + 12 t + 5$$

 $y = -2 t^2 + 16 t + 10$

where t is in seconds and x and y are in meters. Find the particle's velocity vector \vec{v} as a function of time, and find its magnitude at t = 6 s.

6. A block of mass m=400 g is attached to a light spring of force constant $k_H = 10 \ \mathrm{Nm^{-1}}$, see Figure 6.1 (a). The block is pushed against the spring from x = 0 to $x_i = -10$ cm, see Figure 6.1 (b), and then released to oscillate on a horizontal frictionless surface.

Find:

- a. the angular frequency and the period of the block-spring system.
- [6]

b. the maximum speed and maximum acceleration of the block.

[6]

c. the position, speed, and acceleration of the block at any time.

[8]

END OF EXAM