BINDURA UNIVERSITY OF SCIENCE EDUCATION

MASTERS IN BUSINESS LEADERSHIP

MBL528

Business Statistics and Management Science
Time: 3 hours
Candidates should attempt all questions in Section A and at most THREE Questions from Section B. Each question should start on a fresh page. Marks will be allocated as indicated.

SECTION A (40 marks)

Candidates may attempt ALL questions being careful to number them A1 to A3.

- A1. Define the following terms:
 - (a) Measure of central tendency,

[2]

(b) Null hypothesis,

[2]

(c) Type I Error,

2

(d) Confidence interval, and

[2]

(e) level of significance.

[2]

- A2. Suppose that you have two independent random samples X_1, X_2, \dots, X_{10} and Y_1, Y_2, \cdots, Y_8 from distributions $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$ where $\overline{x} = 4.8$, $s_1^2 = 8.64$, $\overline{y} = 5.6 \text{ and } s_2^2 = 7.88.$
 - (a) State the formulae for finding the 95% confidence interval for the difference between 2 means.
 - (b) Find the 95% confidence interval for the difference between the 2 means $\bar{x} \bar{y}$. [6]
 - (c) State the null hypothesis for testing the difference between 2 means. [2]

(d) Test the hypothesis that the means are equal.

[6]

A3. Given the following data from an experiment where we have variables x and y.

Chirps(Y)	24	21	19	19	19	15	12	11	10	22	18
Temp(X)	63	62	60	60	58	58	55	53	52	64	61

(a) State the model that is being estimated.

[2]

(b) Write down the model estimation formula.

[2]

	ANOVA Model Sum of Squares df Mean Square F Sig. 1 Regression 197.650 1 197.650 95.990 .000 Residual 18.532 9 2.059 Total 216.182 10 a Dependent Variable: y b Predictors: (Constant), x
	Coefficients Model Unstandardized Coefficients Standardized Coefficients t Sig. B Std. Error Beta 1 (Constant) -48.374 6.714 -7.205 .000 x 1.118 .114 .956 9.797 .000 a Dependent Variable: y
	 (i) From the SPSS output above obtain the regression model and state whether all parameters are significant. [2,2] (ii) Interpret the ANOVA table and state if regression is significant. [4] (iii) Estimate the correlation coefficient. [6]
	SECTION B (60 marks)
Cand	idates may attempt THREE questions being careful to number them B4 to B6.
B4.	 (a) Explain the differences between Correlation and regression. (b) Briefly discuss a situation as a manager when you would apply Hypotheses testing of difference between means. (c) Why do we need to monitor queues when offering service? (d) Customers arrive at a single server queueing system in accordance with a Poisson system at rate 10 per hour. If the sever works continuously, the number of customers that can be served in an hour has a Poisson distribution with mean 15. Determine the proportion of time when noone is waiting to be served. (e) In inventory control what is the meaning of the following: (i) Setup cost, (ii) holding cost, (iii) optimum order quantity. (iv) Consider an item that is used at the rate of 5 units per day. The holding cost per day is \$1. The set up cost is \$10. The unit purchase price is c₁ = \$2. If shortages are not allowed, Determine the optimal order quantity.
	page 3 of 5

(c) A regression model was fitted to the data and yielded the following in SPSS

B5. A factory manufactures Xs and Ys. Production times(hrs), Capacity(hrs) and profits (\$s) are as follows:

	X	Y	Capacity
Dept A	8	10	11000
Dept B	4	10	9000
Dept C	12	6	12000
Profit	\$4	\$8	

(a) Formulate the linear programming problem.

4 [6]

(b) Use the graphical method to determine the optimal resource allocation.

- (c) Use the simplex method to determine the optimal daily resource allocation for 8 each activity.
- (d) State the best decision for the manager.

[2]

- (a) Define the following: B6.
 - (i) maximax,

[2]

(ii) minimax,

[2]

(iii) maximum likelihood criterion.

[2)

(iv) expected value criterion.

[2]

(b) (i) Suppose that you want to invest \$10,000 in the stock market by buying shares in one of two companies: A and B. Shares in Company A, though risky, could yield a 50% return on investment during the next year. If the stock market conditions are not favorable (i.e., "bear" market), the stock may lose 20% of its value. Company B provides safe investments with 15% return in a "bull" market and only 5% in a "bear" market. All the publications you have consulted (and there is always a flood of them at the end of the year!) are predicting a 60% chance for a "bull" market and 40% for a "bear" market. Given the data below:

Given the data below:		
	$1-year\ return\ on\ \$10000$	
	investment	
Decision Alternative	"Bull" market	"Bear" market
Company A	\$5000	-\$2000
Company B	\$1500	\$500
Probability of Occurence	0.6	0.4
1 1 Ookoning of Court of the		

- (a) Use the maximum likelihood criterion to determine the most likely occur-
- (b) Obtain the expected value of money (EMV) and the expected opportunity loss(EOL).
- (c) Construct a decision tree and determine where you should invest your money.

B7. (a) Define a transportation problem.

[4]

(b) What is the aim of Vogel's method.

[2]

(c) Perform one iteration of Vogel's approximation method to solve the following transportation problem.

Supplier			Destination		·	Supply
	1	2	3	4	5	
1	2	4	. 6	5	7	4
2	7	6	3	M	4	6
3	8	7	5	2	5	6
4	0	0	0	0	0	4
Demand	4	4	2	5	5	

[8]

(d) Describe an Assignment problem.

[6]

END OF EXAMINATION PAPER.