BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF SCIENCE EDUCATION

DEPARTMENT OF ENGINEERING AND PHYSICS

BACHELOR OF SCIENCE (HONS) DEGREE IN ELECTRONIC ENGINEERING

EEE3201 ELECTROMAGNETIC THEORY

TIME: 3 HOURS

~ \$ MM 2024

INSTRUCTIONS TO CANDIDATES

- 1. The paper consists of SEVEN (7) questions.
- 2. Answer any FIVE questions.
- 3. Each question carries 20 marks.

ADDITIONAL MATERIALS

Non-programmable calculator.

-	STION 1	[4]	
	Briefly explain dielectric strength.	•	
b.	. State and explain the applications of Gauss law in electrostatics. . In a material for which conductivity is 5 siemens/m and r=1 and E	[10] =250 sin	
с.	1010t (V/m). Calculate the conduction and displacement current densities		
	1010t (v/m). Calculate the conduction and displacement carrent	[6]	
	•	r ~1	
QUES	STION 2	•	
a.	. Give a detailed explanation on plane waves in lossy and lossless diele	ectrics	
	•	[10]	
b	A point charge $Q = 30nC$ is located at the origin in cartesian coordinates.		
	Calculate the flux density D at (1,3, -4) m.	[5]	
C.	. Distinguish between field theory and circuit theory.	[5]	
_			
-	stion 3	Laboota	
a	a. The capacitance of the conductor formed by the two parallel metal sheet		
	each 100cm ² in area separated by a dielectric 2mm thick is 2×10 ⁻¹⁰ mi	CIOTALAU	
	and a potential of 20KV is applied to it. Calculate:	F23	
	i. Electric flux.	[3]	
	ii. Potential gradient in kV/m.	[3]	
	The relative permittivity of materials.	[3]	
	iv. Electric flux density.	[3]	
a	a. With the aid of diagrams explain the difference between polarized a	nd non-	
	polarized electric field.	[8]	
Que	stion 4		
a	a. With the aid of equations show the relationship between magn	etic flux	
•	density and field intensity.	[8]	
h	o. State Bio-Savarts law.	[2]	
	c. Define the following:		

i. Poynting vector.	[2]		
ii. Magnetization.	[3]		
d. Write short notes on Faraday's law of induction.	[5]		
Question 5			
a. Derive an expression for energy stored and energy density	in magnetic		
field.	[9]		
b. State Lenz's law.	[3]		
c. With the aid of diagrams and equations, give any three coordinates			
systems.	[8]		
Question 6			
a. Briefly explain any five properties of electric lines of force.	[10]		
b. Three-point charges Q1 = 50nC, Q2 = 120nC and Q3 = -60nC, are enclosed by			
surface. Calculate the net flux.	[3]		
c. Define the following terms:			
i. Polarization.	[3]		
ii. Current density.iii. Dielectric strength.	[2] [2]		
<u>-</u>	r-1		
Question 7			
 a. Explain why rectangular waveguides are preferred over circular 			
	[5]		
b. State and proof divergence theorem.	[9]		
c. State the following:			
i. Coulomb's law.	[3]		
ii Amporo's circuital law	[31		