BINDURA UNIVERSITY OF SCIENCE EDUCATION

PHYSICS AND ENGINEERING DEPARTMENT

MPH503: ELECTRICITY AND MAGNETISM [3]

TIME: 3 HOURS

1 AUG 2012 4

INSTRUCTIONS

Answer question one in Section A and any three questions from Section B. Section A carries 40 marks and each question in Section B carries 20 marks.

Physical constants

Electronic charge, $e = 1.6 \times 10^{-19} C$ Boltzmann's constant, $k = 1.38 \times 10^{-23} J K^{-1}$ Mass of an electron, $m_e = 9.11 \times 10^{-31} kg$ Permittivity of free space, $\varepsilon_o = 8.85 \times 10^{-12} F m^{-1}$ Permeability of free space, $\mu_o = 4\pi \times 10^{-7} H m^{-1}$ Electric potential at infinity, $V_{\infty} = 0$ Coulomb's constant, $k_e = 9 \times 10^9 N m C^{-2}$

SECTION A

- 1 (a) What is the equation in cylindrical coordinates of a cone $x^2 + y^2 = z^2$? [4]
 - (b) Convert the point (6, 8, 4.5) in Cartesian coordinate system to cylindrical coordinate system. [6]
 - (c) Compute the divergence of the vector field $\vec{F}(x, y, z) = x^2 y \vec{i} + xyz \vec{j} x^2 y^2 \vec{k}$. [6]
 - (d) Determine the curl of the vector field $\vec{E} = yz^2\vec{\iota} + xy\vec{\jmath} + yz\vec{k}$. [6]
 - (e) Given that F(x, y, z) and that G(x, y, z) are vector fields, what, if anything, is wrong with the following expression: $\nabla \times G = \nabla \cdot F$. [4]
 - (f) Define a conservative vector field? Determine whether the following vector field is conservative or not:

$$\vec{B} = x^2 y \vec{\imath} + x y z \vec{\jmath} - x^2 y^2 \vec{k}. \tag{7}$$

- (g) What are the limitations of Coulomb's law of electrostatics? Give any three. [3]
- (h) A long straight wire has a circular loop with a radius of 5 cm. The current flowing through a closed loop of this wire is 2 A. Show that the magnetic field due to this loop has magnitude 8×10^{-6} T. [4]

SECTION B

- 2 (a) The electric field at 2 cm from the centre of long copper rod of radius 1 cm has a magnitude 3 N/C and directed outward from the axis of the rod.
 - (i) How much charge per unit length exists on the copper rod? [3]
 - (ii) What would be the electric flux through a cube of side 5 cm situated such that the rod passes through opposite sides of the cube perpendicularly? [3]
 - (b) The charge density $\rho(r)$ of a solid ball of radius R depends on the radial coordinate and is given by $\rho(r) = Cr^{\alpha}$ where C and α are constants. Show that
 - (i) the net charge Q_{net} of such a ball is $Q_{net} = \frac{4\pi}{\alpha+3} CR^{\alpha+3}$. [6]
 - (ii) outside the ball (r > R), the electric field is $E(r) = \frac{Q_{net}}{4\pi\varepsilon_0 r^2}$. [2]
 - (iii) inside the ball (r < R), the electric field is $E(r) = \frac{Q_{net}}{4\pi\varepsilon_a R^2} \left(\frac{r}{R}\right)^{\alpha+1}$. [6]
- 3 (a) For a point charge Q, the potential V is given by

$$V = \frac{Q}{4\pi\varepsilon_0 r}$$

Verify, using spherical polar coordinates, that

$$\vec{E} = -\vec{\nabla}V = \frac{Q}{4\pi\varepsilon_0 r^2}\hat{r}$$

(b) A certain magnetic field (in cylindrical polar coordinates) is given by

$$\mathbf{B} = B_o \frac{\rho}{1+\rho^2} \hat{\phi} + \alpha \hat{z}$$

where B_o and are α constants.

(i) show that
$$\nabla \cdot \mathbf{B} = 0$$
 [6]

(ii) find the current
$$I$$
. [8]

A circular loop of radius R in the xy plane carries a steady current I, as shown in Fig. 4.1.

Show that the magnetic field at a point P on the axis of the loop, at a distance z from the centre is $\frac{\mu_{oIR}^2}{2(R^2+z^2)^{3/2}}$ [20]

You are required to use Ampere's law in this question. Fig. 5.1(a) shows a long, straight wire of radius a. The wire carries a current I_o which is distributed uniformly over its cross-section. A cross-section of the same wire showing the radius a and the Ampere's loop of radius r is shown in Fig. 5.1(b).

Fig. 5.1(b)

- (a) Show that the magnetic field inside the wire is $B = \frac{\mu_o I_o}{2\pi} \frac{r}{a^2} (r \le a)$ and magnetic field outside the wire is $B = \frac{\mu_o I_o}{2\pi r} (r \ge a)$. [15]
- (b) Sketch a graph to show the variation of B with r. [5] Page 3 of 4

The rectangular conducting loop shown in Fig. 6.1 rotates at 6000 revolutions per minute in a uniform magnetic field of flux density given by

$$\mathbf{B} = \widehat{\mathbf{y}}50 \ mT.$$

The loop has an internal resistance is 0.5Ω .

Fig. 6.1

- (a) Show that the current induced in the loop is 37.7 $\sin(200\pi t) mA$.
- (b) Determine the direction of the current. [5]

[15]

END OF EXAMINATION