BINDURA UNIVERSITY OF SCIENCE EDUCATION

PHYSICS AND ENGINEERING DEPARTMENT

PH103: ELECTRICITY AND MAGNETISM

DURATION: THREE HOURS

AUG 20124

Answer ALL parts of Section A and any THREE questions from Section B. Section A carries 40 marks and Section B carries 60 marks.

Electronic charge, $q=1.6 \times 10^{-19} \, \mathrm{C}$ Permittivity of free space, $\varepsilon_0=8.85 \times 10^{-12} \, \mathrm{Fm^{-1}}$ Permeability of free space, $\mu_0=4\pi x 10^{-7} \, \mathrm{Hm^{-1}}$ Mass of electron, $m_e=9.11 \times 10^{-31} \, \mathrm{kg}$ Mass of proton, $m_p=1.67 \times 10^{-27} \, \mathrm{kg}$ Avogadro constant, $N_A=6.02 \times 10^{23} \, \mathrm{mol^{-1}}$ Universal Gravitation Constant, $G=6.67 \times 10^{-11} \, \mathrm{Nm^2 kg^{-2}}$ Acceleration due to gravity, $g=9.81 \, \mathrm{ms^{-2}}$

SECTION A

- (a) A charged particle may experience a force in an electric field and in a magnetic field. State two differences between the forces experienced in the two types of field.
- (b) A wire carries a current of 10 A in a direction that makes an angle of 30° With the direction of the magnetic field of strength 0.3 T. Find the magnitude of the force on a 5 m length of the wire. [3]
- (c) (i) Write down the mathematical statement of Coulomb's law of electrostatics in vector form, naming all symbols used. [6]
 - (ii) Two charges $q_1 = 4\mu C$ and $q_2 = 3\mu C$ are fixed in place, with a separation r = 3m. Calculate the Coulomb force between them. [3]
- (d) A proton, travelling in a vacuum at a speed of $4.5 \times 10^6 \, ms^{-1}$, enters a region of uniform magnetic field of flux density 0.12 T. The path of the proton in the field is a circular arc, as shown in Figure 1.1.

Figure 1.1. The path of a proton.

(i) State the direction of the magnetic field.

- [1]
- (ii) Calculate the radius of the path of the proton in the magnetic field. [3]
- (e) The quantity of charge q in (Coulombs) passing through a surface of area $7.25m^2$ varies with time according to the equation:

$$q = 3.00t^4 + 5.00t^2 - 700.00$$

where t is in seconds.

Calculate:

- (i) the instantaneous current through the surface at t = 2.00 s. [4]
- (ii) the corresponding current density.

[3]

- (f) A series LCR circuit with L = 2 H, C = 2 μ F and R = 20 Ω is driven by an ac source of maximum emf, 100 V and of variable frequency. Find the resonance frequency ω_0 , the phase ϕ and maximum current I_{max} when the ac source angular frequency is 400 rads⁻¹. [10]
- (g) A solenoid is 30 cm long with 1000 turns per metre and carries a current of 5.0 A. What is the magnitude of the *magnetic field* through the centre of this solenoid? [3]

SECTION B

- 2. (a) Write down and explain three main characteristics for each of the RLC series and parallel circuits. [6]
- (b) State Kirchhoff's junction and loop rules.

[4]

(c) Use Kirchhoff's junction and loop rules to find the currents flowing through the two cells (in Figure 2.1), indicating their directions on a diagram.

[10]

Figure 2.1. An electric circuit.

3. (a) Define electric flux.

- 2
- (b) State Gauss' law in words and in its mathematical form.

[5]

(c) Consider a uniform electric field oriented in the x-direction. Find the electric flux through each surface of a cube with edges L oriented as shown in Fig. 3.1, and the net flux.

[13]

Figure 3.1. Electric flux through a cube.

Figure 4.1. Three point charges.

- (a) Find the components of the force \vec{F}_{23} exerted by q_2 on q_3 .
- (b) Find the components of the force \vec{F}_{13} exerted by q_1 on q_3 . [5]
- (c) Find the resultant force on q₃, in terms of components and also in terms of magnitude and direction. [10]
- **5.** (a) Explain the similarities and differences between electric forces and gravitational forces. [6]
- (b) A 90pF capacitor is connected to a 12V battery and charged to 12V. How many electrons are transferred from one plate to another? [4]
- (c) Four 2 μF capacitors are connected as shown in Figure 5.1.

Figure 5.1. Electric circuit.

Calculate the total capacitance.

[10]

[5]

6. (a) A 15 cm diameter circular loop of wire is placed in a 0.50 T magnetic field.	
(i) When the plane of the loop is perpendicular to the field lines, what is the magnetic flux through the loop?	[3]
(ii) The plane of the loop is rotated until it makes a 35 0 angle with the field lines. What is the angle θ in the equation $\Phi_{B}=BA\cos\theta$ for this situation?	[2]
(iii) What is the magnetic flux through the loop at this angle?	[3]
(b) A generator rotates at 85 Hz in a magnetic field of 0.030 T. It has 1000 turns and produces an rms voltage of 150 V and an rms current of 70.0 A.(i) What is the peak current produced?	[3]
(ii) What is the area of each turn of the coil?	[3]
(c) An LCR circuit has L = 14.8 mH and R = 4.40 Ω .	
(i) What value must C have to produce resonance at 3600 Hz?	[3]
(ii) What will be the maximum current at resonance if the peak external voltage is 150 V?	[3]
END OF EXAMINATION	