BINDURA UNIVERSITY OF SCIENCE EDUCATION CHEMISTRY DEPARTMENT

COURSE: CH104 ANALYTICAL CHEMISTRY I

BSc CHEMISTRY EDUCATION (HONS): PART I Bsc CHEMICAL TECHNOLOGY(HONS): PART 1

- AUG 2024

2 HOURS

ANSWER QUESTIONS <u>ONE</u> AND <u>FOUR</u> OTHERS. EACH QUESTION CARRIES 20 MARKS

1. a) Describe the procedure for an indirect iodometric titration.

[3 marks]

b) Give two reasons why a titration is conducted.

[2 marks]

- c) List four methods of checking the accuracy of an analytical method.

 [4 marks]
- d) State the methods that can be employed to minimize impurities during precipitation. [3 marks]
- e) Write short notes to explain the following terms:
 - i) Ionic strength
 - ii) Common ion effect
 - iii) Co-precipitation
 - iv) Masking agent

[4× 2 marks]

SECTION A: ANSWER ANY TWO QUESTIONS

2. (a) (i) Define pH

[1 mark]

- (ii) Find the pH and fraction of dissociation (α) of a 0.100 M solution of the weak acid HA with Ka = 1.0 × 10⁻⁵. [6 marks]
- (b) (i) Define a buffer solution.

[2 marks]

(ii) Write the Henderson – Hasselbalch equation for a solution of formic acid, HCO₂H. [2 marks]

- (iii) Calculate the quotient $[HCO_2^-]$ / $[HCO_2H]$ at pH = 3 using the expression in (ii) above. Ka = 1.80×10^{-4} . [5 marks]
- (c) Find the pH of 0.050 M NaCN.

[4 marks]

- 3. a) How many significant figures are there in the following numbers?
 - (i) 0. 047
 - (ii) 8.300
 - iii) 180

[3 marks]

- (b) Write each answer with the correct number of significant figures.
 - i) 1.342X 5.5 = 7.381
 - ii) 23.445 + 7.83 = 31.275

[1×2 marks]

- c) i) Describe internal standards as a calibration method in quantitative chemical analysis. [5 marks]
 - ii) Explain when it is useful to use internal standards. [3 marks]
- d) i) What is meant by standard addition?

[2 marks]

- ii) When is it appropriate to use a standard addition method? [3 marks]
- e) Distinguish between random errors and systematic errors.
 [2 marks]
- 4. a) i) For the numbers 116.0, 97.9, 114.2, 106.8, and 108.3, find the mean, standard deviation, range, and 90% confidence interval for the mean. [14 marks]
 - (ii) Using the Q-test, decide whether 97.9 in (i) should be discarded. [5 marks]
 - b) What is the use of a student t -test?

[1 mark]

SECTION B: ANSWER ANY TWO QUESTIONS FROM THIS SECTION.

- 5. a) Write the mass balance for a solution prepared by dissolving 0.025 M of H₃PO₄ in 1.00 L [5 marks]
 - b) If a solution contains the following ionic species H⁺, OH⁻, K⁺, H₂PO₄⁻, HPO₄²⁻ and PO₄³⁻. Write the charge balance. [6 marks]

Page 2 of 3

C	L	4	Λ	A	4
v	П	ı	U	-	1

- c) Using urea as an example explain what is homogeneous precipitation. [4 marks]
- d) A 10.00 mL solution containing Cl⁻ was treated with excess AgNO₃ to precipitate 0.4368 g of AgCl. What was the molarity of Cl⁻ in the unknown. [5 marks]
- 6. a) Describe the following EDTA titration techniques:
 - i) Direct titration

[3 marks]

ii) Displacement titration

[4 marks]

iii) Back titration

[4 marks]

- b) Explain the advantages and disadvantages of potassium dichromate as an oxidizing agent. [4 marks]
- c) What is the concentration of Hg_2^{2+} containing a solution of NaCl 0.03 M saturated with $Hg_2Cl_{2(s)}$? Given that Ksp for Hg_2Cl_2 is 1.2× 10^{-18} [5 marks]
- 7. a) State the properties of an ideal product of precipitation. [4 marks]
 - b) Distinguish between nucleation and particle growth. [2 marks]
 - c) Discuss the techniques that might be employed to promote particle growth during precipitation. [6 marks]
 - d) Distinguish between:
 - i) Inclusion and occlusion
 - ii) Absorption and adsorption.

[2×3 marks]

e) Give the formula for relative supersaturation.

[2 marks]

END OF PAPER