BINDURA UNIVERSITY OF SCIENCE EDUCATION

CHEMISTRY DEPARTMENT

DIPLOMA IN SCIENCE EDUCATION

DCH007/DC005

ANALYTICAL CHEMISTRY

TIME:

2 HOURS

Answer QUESTION ONE (1) and FOUR (4) OTHERS. Each question carries 20 marks. **********************************

- 1. (a) Define the following terms as they apply to analytical chemistry:
 - (i) Analytical technique.

[2 marks]

(ii) Matrix.

[2 marks]

(iii) Analytical method.

[2 marks]

- (b) Distinguish between the following:
 - (i) Precision and accuracy.

[2 marks]

(ii) Determinate and indeterminate error.

[2 marks]

- (c) Define the following:
 - (i) Method validation.

[2 marks]

(ii) Representative sample.

[2 marks]

(d) State three sources of systematic errors and explain how they can be minimized. [3+3 marks]

SECTION A: Answer TWO (2) questions from this section.

2. (a) Analysis of five samples taken from same stock solution containing potassium ion yielded the following data:

Sample	Percent K ⁺
1	5.29
2	5.13
3	5.14
4	5.28
5	5.20

Calculate the following:

(i)	the mean percent of K+ in the samples.	[2 marks]
(ii)	the standard deviation.	[3 marks]
(iii)	the variance.	[3 marks]
(iv)	the coefficient of variation.	[2 marks]

(b) Describe in detail the steps taken when conducting a mass spectrometric analysis. [4 m

[4 marks]

(c) What is the principle behind chromatography?

[3 marks]

(d) What are the advantages of using HPLC over GLC?

[3 marks]

3. The diagram below shows the mass spectrum of methanol (CH₃OH).

(a) Identify the fragments giving rise to the major peaks in the spectrum.

[6 marks]

(b) An analysis of the composition of a newly discovered element, Z, showed the following results.

| Sotope | Relative abundance (%)

Isotope	Relative abund
²⁰ Z	90.91
²¹ Z	0.16
²² Z	8.93

On the mass spectrum of Z, the peak due to isotope ^{21}Z had a peak height of 20 mm.

(i) Deduce the heights of the other two peaks. [4 marks]

(ii) Draw a sketch of a mass spectrum of Z using these heights.

[3 marks]

(iii) Calculate the relative atomic mass of Z.

[3 marks]

(iv) State any two common applications of mass spectrometry.

[4 marks]

- 4. Electrophoresis is a process that can be used to separate mixtures of amino acids.
 - (a) Describe, with the aid of a diagram, the main features of electrophoresis for separating a mixture of amino acids. [6 marks]
 - (b) Suggest why dye is usually added together with the mixture of amino acids before carrying out electrophoresis. [3 marks]
 - (c) All amino acids have a characteristic point known as an isoelectric point.
 - (i) What do you understand by the term 'isoelectric point'? [3 marks]
 - (ii) Suggest how electrophoresis can be used to identify different amino acids. [4 marks]
 - (iii) Suggest how electrophoresis can be used to estimate the molecular masses of different amino acids. [4 marks]

SECTION B: Answer TWO (2) questions from this section.

5. (a) Name any 3 essential components of a mass spectrometer and give a function of each.

[6 marks]

- (b) What are the advantages of mass spectrometry as an analytical technique?
 [4 marks]
- (c) State any two common applications of mass spectrometry.

[2 marks]

- (d) Describe with the aid of a fully labeled diagram, the essential steps involved in performing thin layer chromatography. [8 marks]
- 6. (a) What do you understand by the term partition coefficient?

[3 marks]

(b) Under what conditions is the partition coefficient of a solute between two immiscible solvents valid? [4 marks]

(d) Explain how solvent extraction can be used to extract an organic substance from an aqueous solution. [5 marks]

- (e) The organic solvent which is usually used to carry out solvent extraction is ether (usually ethoxy ethane, also known as diethyl ether, C₂H₅OC₂H₅).
 - (i) State three reasons why ether is particularly useful for the extraction of organic compounds from aqueous solution over other organic solvents. [3x2 marks]

(ii) State one main drawback of ether as an organic solvent and state how this drawback may be overcome [2 marks]

7. (a) A mixture of alanine, aspartic acid and serine was analysed by thin layer chromatography (TLC), with SiO₂ as a stationary phase. The TLC mobile phase was 95% ethanol and 5% H₂O.

Alanine H₂NCH(CH₃)CO₂H
Aspartic acid H₂NCH(CH₂CO₂H)CO₂H
Serine H₂NCH(CH₂OH)CO₂H

- (i) Deduce with reasons the amino acid with
 - 1. the highest R_f value

[3 marks]

2. the lowest Rf value

[3 marks]

(ii) The stationary phase, adsorbed SiO₂, was mixed with silver ions, Ag⁺.

State and explain how the magnitudes of the Rf values were affected by the Ag⁺ ions. [4 marks]

- (b) Draw a labeled TLC chromatogram that can be used to show that all the three amino acids were present in the analysed mixture. [4 marks]
- (c) State two other applications of TLC.

[2x2 marks]

(f) Give two advantages of TLC over paper chromatography?

[2 marks]

END OF QUESTION PAPER