| (d) Show that the sequence $U_n = \frac{2n-7}{3n+2}$ is monotonic increasing. | [6 | 6] |
|-------------------------------------------------------------------------------|----|----|
| (d) Show that the sequence $U_n = \frac{2n-7}{3n+2}$ is monotonic increasing. | [6 | 6] |

B7. (a) When do we say a sequence  $S_n$  is convergent.

(b) Determine whether the sequence  $S_n = \frac{(-1)^{n+1}(n^2)}{n^2+1}$ , where n=1,2,3... converges or diverges.

(c) Find Df and Rf if  $f(x) = \frac{1}{\sqrt{3-x}}$ . [4]

(d) Let  $f(x) = x^2 sin(\frac{1}{x}), x \neq 0$ .

(i) Does f(x) have a derivative at x = 0? Justify your answer.

5

(ii) Is f(x) differentiable at x = 0, justify your answer.

[5]

(e) Find the dimensions of an isosceles triangle of largest area that can be inscribed in a circle of radius a units.

B8. (a) State the Mean Value Theorem of differentiation.

(b) Verify the Mean Value Theorem for  $f(x) = x^2$  where a = 0 and b = 1.

(c) State the second fundamental theorem of calculus.

[2]

(d) Find the area of the region bounded by  $f(x) = 4 - 4x^2$  and  $g(x) = 1 - x^2$ .

[8] (e) Give a detailed sketch of the graph of  $y = \frac{x^3}{3x-2}$ . [10]

### END OF QUESTION PAPER

page 2 of 2

## BINDURA UNIVERSITY OF SCIENCE EDUCATION

# 1/AMT101/MT101: CALCULUS 1 CALCULUS AND FINANCIAL MODELING

Time: 3 hours



Answer ALL questions in Section A and at most TWO questions in section B.

### SECTION A (40 marks)

Candidates may attempt ALL questions being careful to number them A1 to A4.

- A1. (a) Find all critical points for  $f(x) = x^3 3x^2 + 1$ .
  - (b) Find all the local maximum and minimum points for  $f(x) = \frac{1}{2} + \sin(x)$  on
- **A2.** Sole the following inequalities,  $|5x 8| \le 12$ .
- **A3.** (a) State the  $\varepsilon N$  definition of the limit of a sequence.
  - (b) Prove that  $\lim_{n\to\infty} \left(\frac{n-1}{n+1}\right) = 1$ . [5]
- **A4.** Find the derivative of  $sin^{-1}(x)$ . [5]
- A5. (a) Show that the function f(x) = 5x 1 is bijective.
  - (b) Find the inverse of f(x) = 5x 1.

#### SECTION B (60 marks)

Candidates may attempt TWO questions being careful to number them B5 to B7.

- B6. (a) Evaluate the following limits.
  - (i)  $\lim_{x\to\infty} \left[x^{4} \sin^{4}\left(\frac{1}{x}\right)\right]$
  - (ii)  $\lim_{x\to 0} [x^2 \sin(\frac{1}{x})].$ [5]
  - (b) Find the indefinite integral of  $\int \frac{x^3+2}{x^3-x} dx$ .
  - (c) Use the  $\epsilon N$  definition of the limit of a sequence to show that a sequence whose  $n^{th}$  term given by  $a_n = (3 - \frac{1}{7n^2})$  converges to 3.

page 1 of 2

[4]