BINDURA UNIVERSITY OF SCIENCE EDUCATION

PHYSICS AND ENGINEERING DEPARTMENT

PH206: ELECTRONICS 1

TIME: 3 HOURS

BUNNAMA 3 "

INSTRUCTIONS

Answer question one in Section A and any three questions from Section B. Section A carries 40 marks and each question in Section B carries 20 marks.

Physical constants

Electronic charge, $e = 1.6 \times 10^{-19} C$ Boltzmann's constant, $k = 1.38 \times 10^{-23} JK^{-1}$

SECTION A

1	(a)	Distinguish between ideal and practical sources in electric circuit theory.	[2]	
	(b)	Use resistor colour codes to determine the resistances of resistors with the following colours:	band	
	(i)	green, brown, blue, silver.	[2]	
	(ii)	yellow, violet, silver.	[2]	
	(iii)	grey, red, gold.	[2]	
	(c)	The Shockley ideal diode equation can be used to express the net current I flowing through a diode as a function of the voltage V applied across the diode terminals as:		•
		$I = I_0 \left(e^{\frac{qV}{\kappa T}} - 1 \right)$		
		where symbols have their usual meanings.	ran	
	(i)	Define the symbols used.	[3]	
	(ii)	Calculate the thermal voltage across the diode at 298 K. ($\kappa = 1.38 \times 10^{-23} J K^{-1}$).	[3]	
	(d)	List any four major properties of ideal op-amps.	[4]	
	(e)	The instantaneous current of an ac sinusoidal current is given by $= I_m cos\omega t$. Show that $I_{rms} = \frac{I_m}{\sqrt{2}}$.	[6]	
	(f)	A sinusoidal voltage signal is represented by $v = 30 \sin 150\pi t$. Calculate frequency of the voltage signal?	[6]	

- (g) A 2.0 H inductor and a 30 Ω resistor are connected in series with an a.c. voltage source. The voltage across the inductor is given as $v = 100 \sin 20t$. Determine the root mean square value of the applied voltage. [6]
- (h) Calculate the frequency at which an inductor of 50 mH has the same reactance as a capacitor of 470 μF . [4]

SECTION B

For the network shown in Fig. 2.1, find the equivalent resistance *Rab* and the current *i* using the Wye-Delta transformation. [20]

Fig. 2.1

3 (a) Determine the current through 6 Ω resistor in the circuit in Fig. 3.1 using Norton's theorem.

[16]

[4]

Fig. 3.1

(b) Calculate the amount of heat energy dissipated in the 6 Ω resistor in part (a) over a time interval of 1 hour.

Page 2 of 4

4 (a) In the network of Fig. 4.1, find the current through the 6 Ω resistor using Theorem. [16]

Fig. 4.1

- (b) Calculate the potential difference across and the power dissipated in the 6 Ω resistor in part (a). [4]
- 5 (a) Determine the current through the 4 Ω resistor in the circuit in Fig. 5.1 using Mesh analysis. [16]

Fig. 5.1

(b) Hence calculate the voltage across the 4 Ω resistor. [4]

A voltage source is connected to a resistor, capacitor and an inductor as shown in Fig. 6.1.

Fig. 6.1

(a) Express $10 \cos (10t + 75^{\circ})$ in phasor form.

[2]

(b) Determine the voltage v_o across the capacitor giving your answer in time domain.

[18]