BINDURA UNIVERSITY OF SCIENCE EDUCATION

MT102

BACHELOR OF SCIENCE EDUCATION

LINEAR MATHEMATICS 1

AU6 2024

Time: 3 Hours

Candidates may attempt ALL questions in Section A and at most TWO questions in Section B.

Each question should start on a fresh page.

SECTION A (40 marks)

Candidates may attempt ALL questions being careful to number them A1 to A6.

- A1. Given that $\mathbf{u} = 3\mathbf{i} 2\mathbf{j} + 6\mathbf{k}$ and $\mathbf{v} = 2\mathbf{i} + 3\mathbf{j} 4\mathbf{k}$, find $\mathbf{u} \times \mathbf{v}$ and a unit vector perpendicular to the plane containing the vectors \mathbf{u} and \mathbf{v} .
- A2. Find the cartesian equation of a line in space which passes through the points P(2, 3, -2) and Q(5,0,-2).
- A3. Given $z_1 = 2 + i$ and $z_2 = 4 2i$. Find

(a)
$$z_1 \overline{z_2}$$
 (b) $\frac{z_1}{z_2}$. [5]

- A4. (i) Find A^{-1} (the inverse of A) where $A = \begin{bmatrix} -1 & 3 & 6 \\ 2 & 5 & -2 \\ 4 & 1 & 3 \end{bmatrix}$. [7]
 - (ii) Let A, B be square matrices. Outline any six properties of determinants. [4]
- A5. Find the solution of the following system of linear equations using Gauss elimination method

$$x_1 + 2x_2 + 3x_3 = 8$$

$$2x_1 + 3x_2 + 2x_3 = 10$$

$$3x_1 + x_2 + 2x_3 = 7.$$
[6]

A6. (a) Find the real numbers x and y for which

$$\frac{x}{1+2i} + \frac{y}{3+2i} = \frac{5+6i}{-1+8i}.$$

[5]

(b) Show that $-1 + \sqrt{3}i$ is a solution of the equation: $z^4 + 5z^2 + 2z + 20 = 0$. [4]

SECTION B (60 marks)

Candidates may attempt TWO questions being careful to number them B7 to B9.

B7. (a) (i) Define a matrix which is in row echelon form.

[4]

(ii) Find the solution to the linear system of equations,

$$x_1 + 2x_2 + 3x_3 = 17$$

$$3x_1 + 2x_2 + x_3 = 1$$

$$3x_1 - 5x_2 + x_3 = -5$$

using Crammers rule.

[8]

- (b) Solve for x given that $\begin{vmatrix} x & -1 \\ 3 & 1-x \end{vmatrix} = \begin{vmatrix} 1 & 0 & -3 \\ 2 & x & -6 \\ 1 & 3 & x-5 \end{vmatrix}$. [5]
- (c) Determine whether the following matrix is singular or not where $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 1 & 4 & 1 \end{bmatrix}$. [3]
- (d) Solve the following system of simultaneous equations using Gauss elimination.

$$x - 3y + 2z + w = -4$$

$$2x - 6y + z + 4w = 1$$

$$-x + 2y + 3z + 4w = 12$$

$$-y+z+w=0.$$

[10]

- B8. (a) Given the points A(0,1,0); B(1,2,1); and C(2,2,-1), find
 - (i) the angle $B \widehat{A} C$ formed in the triangle ABC,
 - (ii) the area of the triangle ABC.
 - (iii) the equation of the plane that passes through the points A, B, C.

[12]

(b) Find the volume of the parallelepiped formed by the vectors u = < 1, 2, 4 > , v = < 2, 4, 1 >

and
$$w = < 5, 1, 0 >$$
. [4]

(c) Given that a = 3i - 2j + 6k and b = 2i + 3j - 4k, find $a \cdot b$.

[2]

(d) Find the parametric equation of the line l_3 that is parallel to the vector 3i - 2j + 7k and it passes through the point of intersection of the lines;

$$l_1$$
: $F = 7i + 6j + 8k + t(5i + 4j + 5k)$

$$l_2$$
: $\frac{x-8}{6} = \frac{y-7}{4} = \frac{z-9}{6}$.

[7]

(e) If
$$\mathbf{v} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}$$
 and $\mathbf{u} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$, Find $|(2\mathbf{v} + \mathbf{u}) \times (\mathbf{v} - 2\mathbf{u})|$. [5]

- B9. (a) Express in the form a + bi the complex number $\frac{-4 + 6i}{5 i}$. [2]
 - (b) Solve the equation $z^4 + z^3 + 3z^2 + 7z + 20 = 0$ given that 1 + 2i is a root of the equation. [6]
 - (c) (i) Use Euler's formula to show that $\cos \theta = \frac{1}{2} (e^{i\theta} + e^{-i\theta})$ and $\sin \theta = \frac{1}{2i} (e^{i\theta} e^{-i\theta})$. [3]
 - (ii) Hence show that $sin^4\theta = \frac{1}{8}cos4\theta \frac{1}{2}cos2\theta + \frac{3}{8}$. [6]
 - (c) (i) State De Moivres's formula.
 - (ii) Prove the following identity using Demoivre's theorem

$$\cos 5\theta = 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta.$$

[6]

[2]

(d) Express the complex number $-1 + \sqrt{3}i$ in polar form, and find its modulus, argument and conjugate, illustrating these on the argand diagram. [5]

END OF QUESTION PAPER