BINDURA UNIVERSITY OF SCIENCE EDUCATION

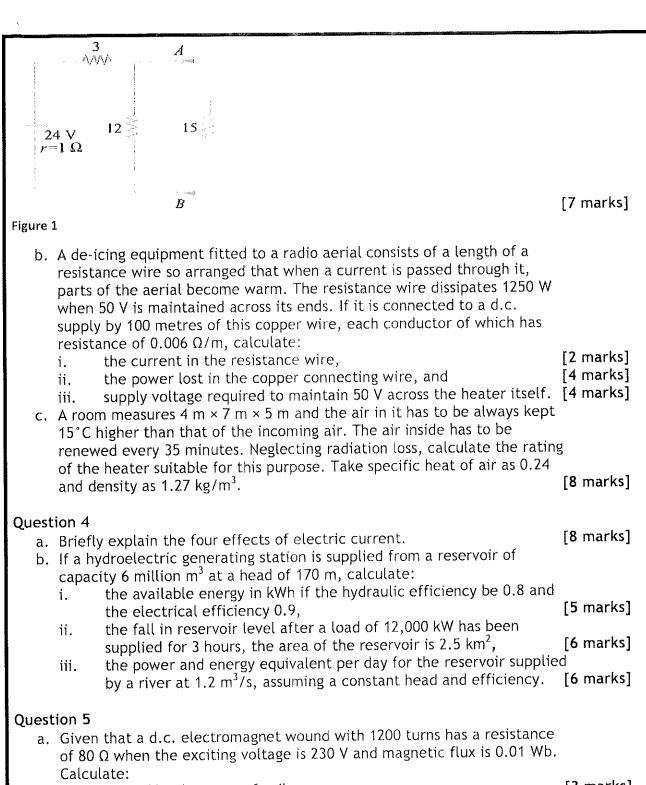
FACULTY OF SCIENCE AND ENGINEERING

AEH 103

Department Of Engineering and Physics Bachelor of Science (Honours) in Agricultural Engineering Electrical and Electronic Principles

3 HOURS (100 MARKS)

INSTRUCTIONS


= JUN 20024

Answer any FOUR questions. Each question carries 25 marks.

Question 1					
		signific	eference to electric current and convectional current, explain the cance of the electron theory in the study of electricity.	[5	marks]
1	b.	When a current of 5 A exists in a $10-\Omega$ resistance for 4 minutes,			
		determine:			marks]
		i.	charge and	۱z	iiiai koj
			number of electrons that pass through any section of the resistor	Г3	marks]
			in this time.	L	iliai vəl
	c.	If a rectangular carbon block with dimensions 1.0 cm × 1.0 cm × 50 cm			
		has a resistivity of $3.5 \times 10^{-5} \ \Omega$ -m, calculate the resistance between:			marks]
			the two square ends,	-	marks]
		ii.	two opposing rectangular faces.	Ĺ	IIIai Kaj
	d.	A curre	ent of 1 A flows in a copper conductor of cross-section 1 cm ² ,		
		length 10 km and a free electron density of copper = 8.5×10^{28} per m ³ . For the electric charge, calculate:			
					marks]
		i.	The velocity,	L	iliai Kaj
		ii.	The time (years) to travel from one end of the conductor to the other.	[5	marks]
Question 2					
Qui		Explain, giving applications, the theory of circuit current flow in liquids.			marks]
	a. L	With	With reference to temperature-coefficient of resistance, use practical		
	υ.	examples to explain the effect of rise in temperature of:			
		i.	Pure metals,	[3	marks]
			Alloys, and	_	marks]
		ii.	Electrolytes.		marks]
	_	iii. Electrolytes. A voltage source delivers 4 A when the load connected to it is 5 Ω and			-
	C.	2 A is delivered when the load becomes 20 Ω. Calculate:			
			maximum power which the source can supply,	[5	marks]
		i.	power transfer efficiency of the source with R_L of 20 Ω ,	-	marks]
		ii.	the power transfer efficiency when the source delivers 60 W.	-	marks]
		iii.	the power transfer efficiency when the source detirors as in	•	-
Question 2					

Question 3

a. Using Thevenin theorem, calculate the current flowing through the 15 Ω resistor in Figure 1.

i. the self-inductance of coil,

[3 marks]

ii. the energy stored in the magnetic field.

[3 marks]

- b. Calculate the line voltage for a star connected load that consists of three identical coils each of resistance 40Ω and inductance 164.5mH. It is given that the line current is 6.24 A and the supply frequency is 50Hz. [9 marks]
- c. Three coils each having resistance 5Ω and inductive reactance 8Ω are connected (a) in star and (b) in delta to a 430V, three-phase supply. Calculate, for each connection, line and phase:

i. Voltages,

[5 marks]

ii. Currents.

[5 marks]

Question 6

a. Distinguish between combinational logic and sequential logic.

[6 marks]

b. Using balanced equations, describe the chemical changes that take place during charging of a lead acid battery.

[6 marks]

- c. For the circuit shown in Figure 2, show the:
 - i. Boolean expression, and

[1 mark]

ii. The truth table of the expression.

[4 marks]

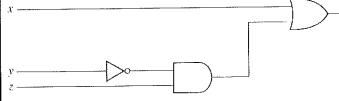


Figure 2

d. Simplify and prepare the truth table for the following Boolean expressions:

Z = ABC + ABC' + AB'C,

[4 marks]

ii. F = x'y'z + x'yz + xy'.

[4 marks]

END OF PAPER.