BINDURA UNIVERSITY OF SCIENCE EDUCATION # DEPARTMENT OF ENVIRONMENTAL SCIENCE # BACHELOR OF SCIENCE HONOURS DEGREE IN SAFETY, HEALTH AND ENVIRONMENTAL **MANAGEMENT** **ESM 411** EJUN 2012 4 # **BSC PART IV EXAMINATION** Occupational Hygiene and Toxicology #### 2 HOURS ## INSTRUCTIONS Answer all multiple choice questions from SECTION A and any two questions from SECTION B ## SECTION A (COMPULSORY) - 1. Toxicology is a field that studies the - A, adverse effects on humans and animals - B. adverse effects of chemicals on living organisms. - C. adverse effects of chemicals and microorganisms. - D. risk-benefit balance of chemicals for living organisms - 2. The exposure assessment step in the risk assessment process identifies all except which of the following? - A. frequency of exposure B, type of chemical exposure C. length of time of exposure C. route of exposure - E. the amount of exposure - 3. What activities should be conducted during the hazard identification step of the risk assessment? - A. Profile the toxic substance - B. Identifying the sources of toxicity information - C. Identifying the exposure pathway - D. All of the above - 4. Give the right sequential order of the following steps: - 1. Risk assessment, 2. Hazard identification, 3. Risk management, 4. Hazard characterisation - A. 1, 2, 3, 4 - B. 4, 3, 2, 1 - C. 2, 1, 4, 3 - D. 2, 4, 1, 3 - 5. What is defined as "a measurable biochemical, physiological, or other alteration within an organism that indicates health impairment or disease"? - A. Biomarker of exposure B. Biomarker of susceptibility - C. Biomarker of effect D. Biomarker of disease - 6. ADME (Absorption, Distribution, Metabolism and Excretion) characteristics: - A. describe what happens to a compound when it has entered the body. - B. describe the toxicodynamic phase. - C. determine the bioavailability of a compound upon oral intake. - D. describe how a compound becomes toxic including the mechanism of action. - 7. Which one of the following is not an effect of sweat loss during hard work? - A. Decreased work performance - B. Increased heart rate - C. Rise in body core temperature - D. None of the above | ı | · 5 | | | |---|-----|---|---| | , | , | 8. What does a threshold limit value-time weighted average (TLV-TWA) for a chemical represent? A. An airborne concentration of a chemical that can never be exceeded during an 8-hour workday | | | | | B. A mean airborne concentration of a chemical believed to cause no adverse health effects to workers exposed for 8 hours/day, 40 hours/week C. An airborne concentration of a chemical that cannot be exceeded for longer than 15 minutes during an | | | | | 8-hour workday | | | | | D. An acceptable mean airborne concentration of a chemical established by the Occupational Safety and Health Administration | | | | | 9. If: M = Metabolic heat production, W = Heat energy associated with external work, | | | | •• | R, C = Heat gain from the environment by Radiation and Convection, respectively E = Heat loss by evaporation, | | | | | Under severe exposure to heat, | | | | | A. M-W±R±C-E=0 B. M-W±R±C > E C. heat energy is not stored D. body temperature equilibrates | | | | | 10. The body temperature control system is analogous to thermostatic control of temperature in a house with heating and cooling capabilities. When the body temperature rises above some theoretical 'set | | | | | point' temperature: A. effector responses associated with heat gain responses are initiated B. skin blood flow decreases | | | | | C. effector responses associated with cooling responses, e.g. shivering, are turned on D. sweating occurs | | | | | 11. Sweating of hands and feet that develop in unacclimatised individuals exposed to a hot
environment is a systemic heat disorder called heat: | | | | | A. syncope B. oedema C. stroke D. exhaustion | | | | | 12. Which of the following interventions to protect one from heat stress is not entirely employer based? | | | | | A. Timely replacement of lost fluid and electrolytes C. Effective personal protective clothing B. Maximise heat tolerance D. Control of climatic work conditions | | | | | 13. A was carpenter wearing propylene coveralls was working on a roof 3 m above the ground and on a sunny day. A heat stress monitor had the recordings: Dry bulb thermometer: 33°C Wet bulb thermometer: 20°C Black bulb globe thermometer: 36°C | | | | | The WBGT value is: | | | | | A. 27.2°C B. Above 27.2°C C. 24.5°C D. Above 24.5°C | | | | | 14. The amount of substance that is actively exerting effects to the human exposed host is: A. exposure dose B. bio-effective dose C. absorbed (internal) dose D. none of the above | • | | | | 15. An organisation intends to buy fish from the local fishermen to provide food for its workers. The concentration of DDT in large fish was found to be 25 mg/kg. Further investigations showed that: | | | | | Concentration of DDT in water = 3x 10 ⁻⁶ mg/l Concentration of DDT in zooplankton = 0.03 mg/kg Concentration of DDT in small fish = 0.5 mg/kg | : | | | | Concentration of DDI in large fish = 25 mg/kg. This finding best shows: | | | | | A. bioaccumulation B. biomagnification C. persistent organic pollutant D. all of the above | | | | | Page 2 of 5 | | | | | · | | t , | 16. Which strategy prevents containing them, removinA. Inspection and auditsB. Engineering controlsC. Administrative controlsD. Personal protective equipment | g them immediately be | of hazardous agen
yond the source? | ts into the w | ork environment by | |---|---|---|-----------------------------|--| | 17. Sampling filters must be a A. collection efficiency and part C. strength and pore size | | B. hygroscopicity D. all of the above | | ound contamination | | 18. A technique used to sepa | arate and concentrate c | hemicals in mixtur | es for subse | quent quantitative | | analysis is:
A. spectrometry | B. gravimetry | C. chromatrogra | phy | D. electrophoresis | | 19. Which of the following is workplace air? | not a common unit for t | he concentration o | f chemicals | in the | | | . mg/kg C. | ppm | D. mg/m ³ | | | 20. A STEL is a 15 minute tir work day even if the 8 ho should not be longer than at least Z minutes before X Y Z A. 30 5 30 B. 15 4 60 C. 15 6 120 D. 60 3 15 | our TWA is within the TL
n X minutes and should
successive exposures. | V-TWA. Exposure not occur more the | s above the
at Y times a | TLV-TWA of the STEL | | 21. A substance which becauprevents the body from a is called: | use of its specific toxic obsorbing, transporting of | effect on biochemic
or utilising oxygen | cal mechani
for the prod | sms in the body
uction of usable energy | | A. toxin B. irritan | t C. asphy | yxiant | D. mutant | | | To identify peak or ceiling occupational hygienist wide. A. area sampling B. | g concentrations of con
ill likely choose which a
integrated sampling | ir sampling method | t | production, the D. grab sampling | | 23. In ventilation systems the | e difference between the | e pressure in the e | xhaust syst | em and the atmospheric | | pressure is called:
A. velocity pressure | B. total pressure | C. flow rate | D | . static pressure | | 24. Sound waves with a wave the sound waves - ** A. pass through the barrier C. bend around the barrier | B. vil | nin barrier are little
brate the barrier at
tho off the barrier | | | | 25. Sound intensity is similar A. amplitutde and direction C. frequency and magnitude | | ept that sound inte
B. magnitude
D. direction an | and direction | | | | | onservatio | n programme is | s required if e | employees | experience an | exposure to | he action | |--|--|--|--|---|-----------------------------|--|-----------------|--------------------------------| | | el of:
IBA or m | ore | B. at least 80 | dBA | C. 80 dBA | or more | D. 85 dBA | or higher | | | ad shield
neutron: | | by dentists to
B. beta rays | | ıst -
(-rays | D. alp | ha particles | | | A. usin | g a dam | e following
pening ma
le frequen | | in reducing | B. bala | azards?
ancing rotating
rict the duratio | | , | | res
fou
A. bloo
B. air s
C. pota
D. urind | pite from
ndry?
od sample
amples f
able wate
e sample | work. When work, who work to detect to measure samples to meas | andry complain
at should an in
at carbon mono
exposures to
to detect PCB
ure exposures
mental pathwa | dustrial hygie
xide exposur
zinc fume
concentration
to lead | enist be eques | uipped to obtai | in, upon arriva | at the | | A. To n | oredict di | scharge se | | | B. To estir | mate chemical | dosage | | | SECTI | | 4 14 | 1. 4 | | a frankla in a | than unanamini | na avalvatina | and | | 1, | control | <i>ling</i> of env | giene is the scient
ironmental stre
erms in italics of
examples of co | sses arising t
clearly indica | from the wo
ting what is | orkplace".
s involved. | | and
[16 Marks]
[4 Marks] | | 2. | infl
(b) De | uence the | onmental and hextent of (healt interventions onents. | h) risk. | | | | [10 Marks] | | 3. | Discus
ventilat | | dentification, ex | posure asse | ssment and | d control interv | entions for | [20 Marks] | | 4. | (a) A w | | the following ex
me (h)
4
2 | Nois
9
9 | 5 | | | | | | (i) | | 2
e the % dose ι | | noise HC | | | [2 Marks] | | · | (ii)
Accu | Explain y | worker need to
our answer.
ria of 90dBA an | | | | | [3 Marks] | | · | | values:
Exposu | re time (h) "
32
16
3 | PEL
80
85
90 | (dBA) | 0077 22. 0011 | ,,,,,,,,,, | | | | | | 1
2
1 | 95
100
108 | | | | | | | | | | Page | | | | | (b) Copy and complete the table below for ionising radiation: | Type of ionising radiation | Examples | | Main characteristic | | | |----------------------------|----------|---|---------------------|--|--| | | (i) | - | - | | | | Particulate | (ii) | | Pa- | | | | | (i) | ы | pa . | | | | Electromagnetic | (ii) | - | ** | | | [6 Marks] (c) Explain three main body organ (health) effects of ionising radiation. [3 Marks] (d) Describe three control methods for internal ionising radiation hazards and their applications. [6 Marks] ## **END OF PAPER**