OCH MO

BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF CHEMISTRY

MAIN EXAMINATION PAPER

DEGREE PROGRAMME:

BSC HONS CHEMICAL TECHNOLOGY

COURSE:

(CHT101) INORGANIC CHEMISTRY I

DURATION:

2 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. Answer Question 1 and Two questions in Section A and Two from Section B.
- 2. Each question should start on a fresh page and marks will be allocated as indicated.
- 3. Each question carries 20 Marks.

Question 1

- (a) Explain why Zn and Zn(II) compounds are diamagnetic, irrespective of the coordination environment of the Zn^{2+} ion. [4 marks]
- (b) Briefly explain hybridization and its significance in Valence Bond Theory (VBT).

[4 marks]

- (c) Explain why the ground state configuration of $1s^22s^1$ for a Li atom is energetically preferred over $1s^22p^1$. [4 marks]
- (d) Briefly explain the Hund's rule, Aufbau principle and Pauli exclusion principle.

[6 marks]

- (e) Using IUPAC norms write the chemical formulas of the following compounds;
- (i) Pentaamminechloridoplatinum(IV) nitrate

[1 marks]

(ii)Tetraamminediaquacobalt(III)chloride

[1 marks]

SECTION A: ANSWER ANY TWO QUESTIONS

Question 2

(a) Draw and label a complete Molecular Orbital (MO) energy level diagram for O2.

[10 marks]

(b) Using the MO diagram write the valence orbital occupancy (i.e. electron

configuration) for O2.

[2 marks]

(c) Draw a Lewis diagram for O_2 .

[2 marks]

- (d) Name a property of oxygen that is clearly shown by the molecular orbital energy level diagram but not by the Lewis diagram. [1 mark]
 - (e) Explain why when O_2 reacts with Na metal, the peroxide anion is generated (O_2^2) . [5 marks]

$$2Na(s)+O_2(g)\rightarrow Na_2O_2(s)$$

Question 3

Discuss the main reasons why the periodic table might need to be redesigned. [20 marks]

Question 4

(a) Briefly explain how inorganic chemistry can be used to promote sustainability.

[10 marks]

(b) Highlight the limitations of the Bohr atomic model.

[4 marks]

(c) Briefly discuss factors that affecting atomic orbital energies.

[6 marks]

SECTION B: ANSWER TWO QUESTIONS

Question 5

(a) Based on the number of mole of chlorides precipitated with AgNO3 solution in the [5 marks] complexes below, complete the table below.

Formula	Mole of Cl-	Complex	Valence of	Primary	Secondary
	precipitated	Composition	the Metal	Valence	Valence
MnCl3.4NH3	2				
PtCl ₂ .2NH ₃	0				

- (b) Show whether $Ni(CO)_5$ and $[Fe(CN)_4Br_2]^{3-}$ obey the 18-electrone rule. [5 marks]
- (c) Consider the following complex: [Cr(H₂O)₂(C₂O₄)₂]-
- (i) Name the complex using the IUPAC norm.

[1 mark]

(ii) Write down the metal oxidation state, electronic configuration and coordination number.

3 marks

- (iii) Draw possible structures of the complex showing the stereochemistry. [4 marks]
- (iv) Calculate the spin only magnetic moment of the complex.

[2 marks]

Question 6

- (a) Outline the assumptions made in the Crystal Field Theory (CFT). [6 marks]
- (b) Rationalize why [Fe(OH₂)₆]²⁺ and [Fe(CN)₆]⁴⁻ complexes, are paramagnetic and [4 marks] diamagnetic, respectively.
- (c) Name and illustrate types of isomerism which may arise in each of the following cases.
- (i) $[Zn(NH_3)_4][Cu(Cl_4]$

[2 marks]

(ii) [Cr(OH)3(NH3)3].

[2 marks]

(iii) [Fe(CN)s(SCN)]4-

[2 marks]

- (d) Draw the structure of the following compounds;
- (i) Sodiumhexacyanoferrate(II)

[2 marks]

(ii) Potassiumamminedicyanodioxoperoxochromate(VI)

[2 marks]

Question 7

(a) Only one compound having the formula $[Zn(py)_2Cl_2]$ (where 'py' is pyridine) is known, but two different compounds (isomers) are known with composition $[Pt(py)_2Cl_2]$. Explain these observations and describe the structures of each of complexes.

[3 marks]

- (b)List three factors that affect the stability of coordination compounds. [3 marks]
- (c) Giving reasons explain which of the following complexes would undergo Jahn-Teller distortion. [6 marks]
- (i) $[Fe(Cl_6]^{4-}$ (ii) $[MnCl_6]^{3-}$ (iii) $[CuCl_6]^{4-}$ (iv) $[CrCl_6]^{3-}$ (v) $[VCl_6]^{4-}$ (vi) $[Mn(CN)_6]^{4-}$
- (d) Explain the key differences between Molecular Orbital (MO) and Valence Bond (VB) theory. [6 marks]
- (e) Write chemical formulas of two complexes that can exhibit square planar geometry. [2 marks]

END OF EXAMINATION

CHT101-ME-02

	-			
				Noble
				gases I
Alkali metals			Hal	ogens 🔻
1 Alkaline				18 8A
metals			13 14 15 16	17 He
H 2 1.008 2A			3A 4A 5A 6A	7A 4.003
Li Be 9.012			5 B C N O 14.01 16.00	9 10 F Ne 19.00 20.18
11 12 2 2 4 5	6 7 8 9	10 11 12	13 14 15 16 A1 Si P S	17 18 C1 Ar
Na Mg 3 4 5	Transition metals	28 29 30	26,98 28.09 30.97 32.07 31 32 33 34	35 36
19	24 25 26 27 Cr Mn Fe Co 52.00 54.94 55.85 58.5		Ga Ge As Se 72,59 74,92 78,96	Br Kr 79.90 83.80
37 38 39 40 41 Nb 35.47 87.62 88.91 91.22 92.91	42 43 44 45 Mo Te Ru Rh 95.94 (98) 101.1 102.	Pd Ag Cd 107.9 112.4	49 50 51 52 In Sn Sb Te 121.8 127.6	
55 56 57 72 73 132.9 137.3 138.9 178.5 180.9	74 75 76 77 W Re Os Ir 183.9 186.2 190.2 192.	Pt Au Hg 195.1 197.0 200.6	81 R2 R3 R4 P0 P0 204.4 207.2 209.0 (209)	85 At Rn (210) (222)
87 Fr Ra Ac Rf Db	Sg Bh Hs Mt	Uun Uuu Uub	metals	nonmetals
*Lanthanides Ce		2 63 64 65 Sm Eu Gd Tb 50.4 152.0 157.3 158.	Dy Ho Er Tm 162.5 164.9 167.3 168.9	70 71 1 Yb Lu 9 173.0 175.0
90 Th	91 92 93 9		98 99 100 101 Cf Es Fm Mo	
**Actinides 232.		244) (243) (247) (247		(259) (260)