## BINDURA UNIVERSITY OF SCIENCE EDUCATION

## BACHELOR OF SCIENCE IN OPTOMETRY

## OPTC102: FOUNDATION OF MATHEMATICS

Time: 3 hours

Candidates may attempt ALL questions in Section A and at most TWO questions in Section B. Each question should start on a fresh page.

## SECTION A (40 marks)

Candidates may attempt ALL questions being careful to number them 1 to 6.

1. Solve for x if

$$\left|\begin{array}{cc} x & -1 \\ 3 & 1-x \end{array}\right| = \left|\begin{array}{ccc} 1 & 0 & -3 \\ 2 & x & -6 \\ 1 & 3 & x-5 \end{array}\right|$$

[4]

2. If 
$$(x+iy)^2 = 3+4i$$
 find  $x$  and  $y$ , where  $x, y \in \mathbb{R}$ 

[5]

- 3. (a) Define a scalar and vector product of two vectors **u** and **v** and illustrate these geometrically. [4]
  - (b) Given  $\mathbf{u} = 3i + 2j + 5k$  and  $\mathbf{v} = 6i + 7j + 9k$ , find  $\mathbf{u} \times \mathbf{v}$  and a unit vector perpendicular to the plane containing the vectors  $\mathbf{u}$  and  $\mathbf{v}$ .

4. (a) Let 
$$\mathbf{A} = \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{bmatrix}$$
. Find  $\mathbf{A}^{-1}$ . [4]

- (b) What do you understand by the order. type, homogeneity and linearity of differential equations. [3]
- 5. Reduce the following system of linear equations to its row-achelon-form so that the solution to the system is self evident.

$$x_1 + 3x_2 + 5x_3 = 14$$
  
 $2x_1 - x_2 - 3x_3 = 3$   
 $4x_1 + 5x_2 - x_3 = 7$ 

[8]

6. Prove using Euler's formula i.e  $e^{i\theta} = \cos \theta + i \sin \theta$  that

(a) 
$$\cos \theta = \frac{1}{2} (e^{i\theta} + e^{-i\theta}).$$
 [4]

(b) 
$$\sin \theta = \frac{1}{2} (e^{i\theta} - e^{-i\theta}).$$
 [4]

SECTION B (60 marks)

Candidates may attempt TWO questions being careful to number 7 to 9.

7. (a) Use Gauss elimination to find the rank of the matrix **A** and a solution to the following system of inhomogeneous simultaneous linear equations,  $\mathbf{A}\mathbf{x} = b$ .

$$\begin{array}{rclrrrr} 2x_1 + x_2 + 2x_3 + x_4 & = & 5 \\ 4x_1 + 3x_2 + 7x_3 + 3x_4 & = & 8 \\ -8x_1 - x_2 - x_3 + 3x_4 & = & 4 \\ 6x_1 + x_2 + 2x_3 + x_4 & = & 1 \end{array}$$

[10]

(b) Let 
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & 4 \end{bmatrix}$$
, calculate  $A^T A$ . [2]

(c) Find the solution of the linear system:

$$\begin{array}{rcl}
2x - 3y + z & = & 0 \\
5x + 4y + z & = & 10 \\
2x - 2y - z & = & -1
\end{array}$$

using Cramer's rule.

[8]

(d) Consider the system

$$\begin{array}{rcl}
 x + 2y + 3z & = & 1 \\
 2x + ky + 6z & = & 6 \\
 -x + 3y + (k - 3)z & = & 0
 \end{array}$$

For what values of k will it have no solution and unique solution. [10]

- 8. (a) Find the solution of  $\mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$  of  $\begin{pmatrix} 1 & 2 & 4 \\ 3 & 8 & 14 \\ 2 & 6 & 13 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 13 \\ 4 \end{pmatrix}$  using LU decomposition. [12]
  - (b) If  $z = \cos \theta + i \sin \theta$  show that  $z^n + \frac{1}{z^n} = 2 \cos n\theta$ . [8]
  - (c) Solve the following differential equations

i. 
$$\frac{dy}{dx} + y + 4 = 0$$
 [5]

$$ii. e^x dx + 6 dy = 0 ag{5}$$

- (d) Find the area of the parallelogram with vectors u = 2i j + 2kand v = 3i + 4j + k as sides.
- (a) If  $z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$  and  $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$ , prove that  $(z_1)(z_2) = r_1 r_2 \{ \cos((\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)) \}.$ 
  - (b) Prove the identities

i. 
$$\sin^3 \theta = \frac{3}{4} \sin \theta - \frac{1}{4} \sin 3\theta$$
. [5]  
ii.  $\cos 5\theta = 16 \cos^5 \theta - 20 \cos^3 \theta + 5 \cos \theta$ . [5]

ii. 
$$\cos 5\theta = 16\cos^5 \theta - 20\cos^3 \theta + 5\cos \theta$$
. [5]

- (c) Find a complex number z which satisfy  $z^3 = 4i$ . [12]
- (d) What is the motivation behind the LU decomposition method of solving systems of linear equations? What is the limitation of the method? [4]