BINDURA UNIVERSITY OF SCIENCE EDUCATION MT210: ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS

Time: 3 hours

Answer ALL questions in Section A and at most TWO questions in section B.

SECTION A (40 marks)

Candidates may attempt ALL questions being careful to number them A1 to A4.

A1.

A1.		
Define:		
(a) A Differential Equation	on.	[2]
(b) A linear Differential e	-	[2]
(c) A partial Differential	equation.	[2]
(d) The order of a Differe	ential equation.	[2]
(e) An inhomogeneous D	Differential equation.	[2]
A2. Consider the differential equation $y'' - 5y' + 6y = 0$		
(a) Show that e^{2x} and e^{3x} are linearly independent solutions of this equation on the interval $-\infty < x < \infty$. [3]		
(b) Write down the gene	eral solution of the given differential equation.	[3]
(c) Find the solution tha	at satisfies the conditions $Y(0) = 2$ and $Y'(0) = 3$.	[3]
(d) Explain why the solution in (c) is unique and determine the interval over which		

- A3. Consider a point $x = x_0$ for a second order homogeneous differential equation y'' + P(x)y' + Q(x)y = 0
 - (a) Ordinary point.

it is defined.

[2]

[3]

(b) Singular point.

[2]

(c) Regular singular point.

[2]

(d) Irregular (essential) singular point.

[2]

- **A4.** (a) Show that the function defined by $f(x) = (2x^2 + 2e^{3x} + 3)e^{-2x}$ satisfies the differential equation $y + 2y = 6e^x + 4xe^{-2x}$ and the condition f(0) = 5. [5]
 - (b) Compute the Wronskin of the following functions from a fundamental set of solutions of the given homogeneous equations cos(3x), $e^{3x}sin(3x)$, sin(3x). [5]

SECTION B (60 marks)

Candidates may attempt TWO questions being careful to number them B5 to B7.

- **B5.** (a) Solve the differential equation y'' + y = 0 using the power series method. [15]
 - (b) Use the method of undetermined coefficients to solve $y' 5y = x^2 e^x x e^{5x}$. [8]
 - (c) Find the eigenvalues and eigenfunctions of $y'' 4\lambda y' + 4\lambda^2 y = 0$; y(0) = 0; y'(1) + y(1) = 0. [7]
- **B6.** (a) Use the method of variation of parameters to solve 4y'' + 36y = 3cosec(x). [15]
 - (b) Find the Bessel function (solutions) of the differential equation $x^2y^2 + xy + (x^2 p^2)y = 0$ where p is a parameter . [15]
- **B7.** (a) Define the following terms;
 - (i) Gamma function. [2]
 - (ii) Bessel function of the first kind of order p. [2]
 - (b) Given that $\Gamma(1.5) = 0.8862$ and $\Gamma(p+1) = p$, find $\Gamma(3.5)$. [2]
 - (c) Find $L^{-1} \frac{1}{(s-1)^2}$ by the method of convolutions. [9]
 - (d) Use power series to solve the equation y'' 2xy' + y = 0. [15]

END OF QUESTION PAPER