BINDURA UNIVERSITY OF SCIENCE EDUCATION PHYSICS AND ENGINEERING DEPARTMENT PH115: DIGITAL LOGIC EXAMINATION DURATION: 3 HOURS

- JUN 2025

Answer ALL questions in Section A and any THREE questions from Section B. Section A carries 40 marks and each question in Section B carries 20 marks.

SECTION A (Answer ALL the questions in this section)

 (a) (i) Draw the electronic symbol for an AND gate. (ii) Construct a truth table for the AND gate. 	[3] [5]
(b) With the aid of a truth table and a diagram, briefly explain how an OR gate can be used to design an electronic gate lock that needs two separate keys to unlock it.) [10]
(c) What is the name of the gate that is often called an inverter? Explain your answer.	[4]
(d) Use two switches, an LED and a dc power supply to draw a circuit diagram who behaves in exactly the same way as an OR gate. Explain your diagram.	nich [6]
(e) Using NAND gates only, show how you can implement the EX-OR gate. Hence, draw a truth table for the EX-OR gate.	[12]

SECTION B (Answer **THREE** questions from this section)

2. A logic circuit with two inputs X and Y and output Q has the following the Boolean equation:

$$Q = \left(\overline{X} + \overline{Y}\right) \bullet \left(X + Y\right)$$

(a) Copy and complete Table 2.1.

[10]

Table 2.1: Truth table.

X	Υ	\overline{X}	\overline{Y}	$\overline{X} + \overline{Y}$	X + Y	Q
0	0					
1	0					
0	1					
1	1					,

(b) Complete Figure 2.1 to show how a logic circuit can be constructed from two NOT gates, two OR gates and one AND gate to represent the Boolean equation above.

X \circ ——

——○ **Q**

YO

Figure 2.1: Part of a logic circuit.

- (c) Which single logic gate has the same function as the complete circuit above? [1]
- 3. (a) What is a logic gate? [2]
- (b) With the aid of a truth table, briefly describe how you can make a NOT gate from:
 - (i) a NAND gate, and

[7]

(ii) a NOR gate.

[7] -

- (c) State with an explanation, the other name for:
- (i) the EX-OR gate,

[2]

(ii) the EX-NOR gate.

[2]

4. (a) What is a truth table? [2]
(b) Figure 4.1 shows a logic gate.

Figure 4.1: A logic gate.

- (i) What name do we give to this type of gate?

 (ii) Construct its truth table.

 [9]
- (iii) Explain why the logic gate shown in Figure 4.1 is referred to as the parity gate. [2]
- (c) Table 4.1 shows how the input sensors A and B of an electronic system control the outputs P, Q and R.

Table 4.1: The truth table showing how the input sensors control the output.

A	В	Р	Q	R
0	0	1	1	1
1	0	0	1	0
0	1	0	1	1
1	1	0	0	0

- (i) Which type of logic gate will produce the P output?
 (ii) Which type of logic gate will produce the Q output?
 (iii) Write down an expression which describes the R output.
 [2]
- **5.** Figure 5.1 shows a logic circuit with three inputs (i.e.), A, B and C.

Figure 5.1: Logic gate combinations.

Construct a truth table for this logic gate network.

[20]

6. The truth table for a logic circuit is shown Table 6.1.

Table 6.1: Truth table.

W	Х	Υ	Z	Q
0	0	1	0	0
0	1	1	1	1
1	0	1	1	1
1	1	0	1	0

(a) Inputs W and X are connected to two logic gates having outputs Y and Z.

Given that Y and Z form the inputs to a third gate which provides the output Q. Complete Figure 6.1 by drawing the logic circuit that would give these outputs.

[12]

W 🖰 _____

——○ **Q**

X ().....

Z

Figure 6.1: Part of a logic circuit.

(b) Use Table 6.1 to write the simplest Boolean expression for the logic signals

	at Y and Z in terms of the inputs W and X.	[4]
(c)	Write the simplest Boolean expression for \boldsymbol{Q} in terms of the inputs \boldsymbol{W} and $\boldsymbol{X}.$	[3]
(d)	Name a single logic gate which performs the same function as the complete	
	circuit above.	[1]

END OF PAPER