Bindura University of Science Education

Faculty of Science Education

Science and Mathematics Education Department

Programme: HBSc Ed (Mathematics)

Course: MT320: Algebra

Duration: Three hours

Semester Examinations

Instructions to candidates

- (i) Answer all questions in Section A and two questions from Section B.
- (ii) Begin each question on a fresh page.

SECTION A (40 marks)

Candidates may attempt ALL questions being careful to number them A1 to A5.

A1. Define the following terms

		_	
(a)	Set		

[2]

- **(b)** Neutral element
- (c) Equivalence relation

[2] [2]

A2. (a) Distinguish between a ring and a group

[8]

(b) Give two examples of rings

[2]

A3. Prove the following De Morgan's theorem

a)
$$(A \cup B)' = (A' \cap B')$$

[5]

b)
$$(A \cap B)' = (A' \cup B')$$

[5]

- A4. Show that $x \equiv y \pmod{m}$ written $x y \pmod{m}$ if x y is divisible by 9 is an equivalence relation.
- [8]
- A5. Let \mathbb{R} be a ring of all 2×2 matrices and then S be a subset of R such that

$$S = \left\{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \right\}$$
 where $a, b, c, d \in \mathbb{R}$. Find the left and right ideal.

[6]

SECTION B (60 marks)

Candidates may attempt TWO questions being careful to number them B6 to B8

- **B6**. (a) (i) Draw a Cayley table of $(Z_5, +)$ [4] (ii) Is $(Z_5, +)$ a group? Give reasons. [2] (iii) State the neutral element of $(Z_5, +)$ [5] (b) Show that the inverse element of a group is unique. [4] (c) Define a mapping and give two types of mappings. (d) If S is the set of all 2 × 2 matrices of the form $\begin{pmatrix} a & b \\ 2h & a \end{pmatrix}$ where $a, b \in \mathbb{R}$. Show that S forms [10]a group under addition of matrices. **B7**. (a) Define the terms [2] Homomorphism of a group (i) [2] Monomorphism of a group (ii) [2] Isomorphism of a group (iii) (b) Let (G, *) and (H, +) be groups [4] (i) Define $(G \times H, \Delta)$ the direct product of G and H. [10](ii) Show that $(G \times H, \Delta)$ is a group (iii) Show that G and H are abelian if and only if $G \times H$ is abelian. [6] (c) Prove that $\theta: R \to S$ is a ring homomorphism then $ker\theta$ is an ideal of R. 4
- **B8**. (a) Let G be any group and $H \leq G$. We say that x is congruent to y modulo H (written $x \equiv$ $y \pmod{H}$ if $x^{-1}y \in H$, where $x, y \in G$. Prove that the congruency modulo H is an equivalence [6] relation in G.
 - (b) Suppose $\Im\sqrt{2} = \{m + n\sqrt{2} : m, n \in \mathbb{Z}\}$, then show that $\Im\sqrt{2}$ is a homomorphism of a ring [10]
 - (c) let K be a ring of all 2×2 matrices of the form $\begin{pmatrix} y & x \\ -x & y \end{pmatrix}$ where $x, y \in \mathbb{R}$ and we have a field of complex numbers. Define a mapping

$$\wp: \mathbb{C} \Rightarrow K$$

$$x + iy \Rightarrow \begin{pmatrix} y & x \\ -x & y \end{pmatrix}$$

Show that \wp is an isomorphism.

[10]

151

(d) Let $f: G \to H$ be a homomorphism then show that ker (f) is a subgroup of G [4]