BINDURA UNIVERSITY OF SCIENCE EDUCATION FACULTY OF SCIENCE EDUCATION DEPARTMENT OF ENGINEERINGAND PHYSICS Bachelor of Science Honours Degree in Electronic Engineering EEE1207 - Digital Electronics

- JUN 2025

Time Allowed: 3 Hours

Total Marks: 100

Special Requirements: Scientific Calculator, rule, pen, pencil

INSTRUCTIONS

1. Answer any FIVE (5) questions

2. The question paper contains SEVEN (7) questions

2. Each question carries 20 marks

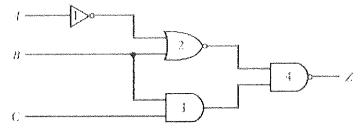
1(a) Using waveform diagrams, differentiate a analogue signal from a digital signal [4] (b) State three advantages of digital signals over digital signals [3] (c) Using a well labelled diagram suitable explain what a non-ideal pulse looks like. (i) A circuit has a bandwidth of 200 kHz. What is the fastest rise time this circuit will pass? (ii) A pulse train has a rise time of 6 ns. What is the minimum bandwidth to pass this pulse train faithfully? (d) Give examples of two analogue and two digital systems (e) A portion of a periodic digital waveform is shown in Figure below. The measurements are in milliseconds. Determine the following: (i) period [1] [1] (ii) frequency (iii) duty cycle [2] f) (i) Determine the total time required to serially transfer the eight bits contained in waveform A of Figure below. The 1 MHz clock is used as reference. [2] (ii) What is the total time to transfer the same eight bits in parallel? [1] (ii) A parallel transfer would take 1 mS for all eight bits. (g)Draw a timing diagram for a digital signal that continuously alternates between 0.2 V (binary 0) for 2 ms and 4.4 V (binary) for 4 ms. [2] 2(a)Find the equivalent of the following numbers (i) decimal equivalent of (1E0.2A)₁₆ [2] (ii)decimal equivalent of 137.218 [2] (iii) hexadecimal equivalent of 82.25₁₀ [2] (iv)octal equivalent of 2F. C4₁₆ [2]

[2]

(v) and the hex equivalent of 762.0138

(b) Find 2's complement of 00011101.	[2]
(c)(i)State two advantages of Gray Code and its disadvantage.	[2]
(ii)Encode the decimal number 46 to Gray code.	[2]
(iii)Convert 1010010 to Gray Code.	[2]
(iv)Convert Gray code word 1111011 into binary	[2]
3(a)(i) Represent a NOR gate using ON/OFF switches, bulb and a cell	[2]
(ii)Derive the truth table for the NOR gate	[2]
(iii)Give the logic symbol of a NOR gate	[1]
(iv)Write down a Boolean expression of the above NOR gate	[1]
(b) If the two waveforms shown in Figure are applied to a NOR gate, what	t is the resulting
output waveform?	[2]
$\begin{array}{c c} A & & \\ B & & \\ \end{array}$	

(c)(i) State two De-Morgen's Theorems using Boolean algebra	[1]
(ii)Prove the two theorems using truth tables	[4] [5]
(d) Apply De-Morgan's theorem to the expression	
$\overline{AB}(CD + \overline{E}F)(\overline{AB} + \overline{CD})$	
(e)Derive Boolean expression from the truth table below	[2]


A	B	C	×
О	0	0	Ο.
0	O	4	0
О	1	O	7
O	1	1	1
1	O	O	O
7	O	1	0
1	1	O	0
1	1	1	1

X

4(a) Implement use NOR gates only the expression $Y = \overline{AB} + \overline{BC}$	[5]
(b)Design a logic circuit that has three inputs, A, B, and C, and whose output	
will be HIGH only when a majority of the inputs are HIGH.	[5]

(c) In a simple copy machine, a stop signal, S, is to be generated to stop the machine operation and energize an indicator light whenever either of the following conditions exists: (1) there is no paper in the paper feeder tray; or (2) the two microswitches in the paper path are activated, indicating a jam in the paper path. The presence of paper in the feeder tray is indicated by a HIGH at logic signal P. Each of the microswitches produces a logic signal (Q and R) that goes HIGH whenever paper is passing over the switch to activate it.

Derive a truth table from the given conditions. (d)Derive a Boolean expression for the logic circuit below. [2]

(e) Implement the following Boolean expression $Y = \bar{A}B + \bar{B}C$ using NOR gates [3] only.

5(a)Minimize the expression Y = F(A,B,C) = $\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}BB + A\overline{B}C$ using Karnaugh map. [5] (b)(i)Explain the operation of a 4-to-1 multiplexer with the aid of a logic circuit. [5] (ii)Derive the truth table for the for the multiplexer (c)Draw the logic circuit diagram of a two-bit Ripple Up-counter using Negative Edge-triggered Flip-flops [2] [3] (d)Explain its operation using a timing diagram 6(a) What is the difference between level and edge triggering. [2] (b)(i) Draw a logic diagram of a clocked SR flip-flop using NAND gates. **[31** [2+2] (ii)Describe its operation with the aid of its truth table.

(c)Draw the logic symbol of a positive triggered JK flip-flop [3] (d)How can a S-type flip-flop be converted to a D-type flip-flop [2] (e) With the aid of block diagrams outline the main difference between combinational

[3+3] and sequential logic circuits.

[2] 7(a)Why is a flip flop called a shift register

(b) With the aid of block diagrams illustrate the basic movement of data using 4 bits [2+2+2+2]in the four types of shift registers.

(c) Assume that a 4-bit counter starts in the 0000 state. What will be the count after:12 input pulses? [2]

(d)Draw a logic diagram for 3-stage triggered asynchronous counter with negative [6] triggered flip-flops.

(e)A counter has 14 stable states 0000 through 1101. If the input frequency is 50 KHz, what will be its output frequency. [2]

THE END