SCIENCE AND MATHEMATICS EDUCATION DEPARTMENT **DIPLOMA IN SCIENCE EDUCATION**

COURSE: DC003/DCH006 ORGANIC CHEMISTRY

TIME	2 HO

	TIME	2 HOURS		
ANSWER QUESTION ONE AND FOUR OTHERS. EACH QUESTION CARRIES 20 MARKS				
1 (a)	Draw structures correspond (i) Phenol (ii) Phenylamine (iii) Butan-2-one (iv) Butan-2-ol (v) Methanoic acid	ding to the following compounds: [5x2 marks]		
(b)	Define the following terms (i) Homologuous series (ii) Optical isomers (iii) Functional group	: [2 marks] [2 marks] [2 marks]		
(c)	Name the following compo (i) CH ₂ CHCH ₂ CH ₃ (ii) CH ₂ OHCH ₂ OH (iii) COOH	unds.		
	(iv)	[4 marks]		
	SECTION A: ANSWER ANY	TWO QUESTIONS		
2 (a)	(i) Explain the terms so(ii) Explain why alkanes	rocarbons. Inturated and hydrocarbon. [2 marks] are generally unreactive. [2 marks] Juation for the complete combustion of [2 marks]		

- (b) Methane reacts with bromine to give bromomethane and hydrogen bromide.
 - (i) By what mechanism does bromine react with methane?

[1 mark]

- (ii) Write a balanced equation for the reaction. [2 marks]
- (iii) What type of bond breaking is involved in this reaction?

[1 mark]

(iv) What essential conditions are required in this reaction?

[2 marks]

- (c) For the reaction between bromine and methane, write equations for:
 - (i) The initiation step

[2 marks]

(ii) The propagation steps

[4 marks]

(iii) A termination reaction

[2 marks]

- An organic compound A has the following composition by mass: C, 35.1%; H, 6.6%; Br, 58.3%.
 - (a) Calculate the empirical formulae of A.

[3 marks]

(b) When A is treated with aqueous alkali, 2-methlypropan-1-ol is formed.

Write an equation for the reaction including displayed formulae of the organic product. [3 marks]

- (c) When A is refluxed with ethanolic potassium hydroxide, an alkene, B is formed. B reacts with hydrogen bromide to give compound C.
 - (i) Give the displayed formula of B

[2 marks]

(ii) Give the displayed formula of C

[2 marks]

- (d) Chloroethane, CH₃CH₂Cl, reacts with ammonia, NH₃ to produce an amine.
 - (i) Name the type of reaction.

[1 mark]

(ii) Give the structural formula of the organic product formed. [2 marks]

Page 2 of 5

(iii) Give the mechanism of the reaction.

[5 marks]

(iv) State and explain how the rate of this reaction changes when chloroethane is replaced by lodoethane. [2 marks]

4. There are four alcohols of molecular formula $C_4H_{10}O$ which are structural isomers. Three of these alcohols are given below:

 $\begin{array}{cccc} CH_3CH_2CH_2CH_2OH & CH_3CH(OH)CH_2CH_3 & (CH_3)_3COH \\ & Butan-1-ol & Butan-2-ol & 2-methylpropan-2-ol \end{array}$

- (a) (i) Classify the 3 alcohols into 1°, 2° and 3°. [3 marks]
 - (ii) Give the structural formula of the fourth alcohol which is isomeric with those above. [2 marks]
- (b) On heating with concentrated sulphuric acid (H₂SO₄) butan-2-ol is converted into a mixture of alkenes.
 - (i) Give the name and type of reaction taking place. [1 mark]
 - (ii) Give the structural formulae of two of the alkenes formed.

 [4 marks]
- (c) (i) Give the name and the structural formula of the organic product when butan-1-ol is heated with acidified potassium dichromate (VI) and the product is removed by distillation as it forms. [3 marks]
 - (ii) Give the name and structural formula of the organic product formed when butan-2-ol is heated under reflux with acidified potassium dichromate for 20 minutes.

[3 marks]

- (iii) State the type of reaction occurring in c(ii). [1 marks]
- (d) When 2-methylpropan-2-ol is heated with a carboxylic acid in the presence of a catalyst, an ester $C_6H_{12}O_2$ is formed.
 - (i) Give the structural formula of this ester of molecular formula $C_6H_{12}O_2$. [2 marks]
 - (ii) Name the carboxylic acid needed to form the ester in (d) (i) [1 mark]

SECTION B: ANSWER ANY TWO QUESTIONS.

- 5. Three compounds E, F, and G all have the molecular formula C_3H_6O . E is an alcohol, F is a ketone and G is an aldehyde.
 - (a) Draw possible structural formulae for E, F and G. [6 marks]
 - (b) Describe tests (reagents, conditions and observations with each compound) that would allow you to show that:
 - (i) E is an alcohol whereas F and G are not [3 marks]
 - (ii) F and G are carbonyl compounds whereas E is not [3 marks]
 - (iii) G is an aldehyde whereas E and F are not [3 marks]
 - (c) One of the compounds responsible for the flavor of butter is butane-2,3-dione.

Give the structural formulae of the organic products formed when butane-2,3-dione reacts completely with:

(i) H_2/Ni

[2 marks]

(ii) I₂/OH⁻

[3 marks]

6. Compound H, is a useful intermediate for making aspirin and oil of wintergreen.

- (a) (i) Identify the functional groups in **H**.
 - (ii) Suggest suitable reagents and conditions for reactions I and II. [6 marks]
- (b) Draw the structural formulae of the organic products formed when H reacts with:
 - (i) Na_2CO_3

[2 marks]

[2 marks]

(ii) NaOH

[2 marks]

(iii) Dilute HNO₃

[2 marks]

- (c) When an asprin tablet was crushed up in water and titrated with 1M NaOH, 13.9 cm³ of alkali were required to neutralize its acidity.
 - (i) Calculate the moles of aspirin reacted.

[2 marks]

(ii) Calculate the mass of aspirin in the tablet

[2 marks]

- (d) A soluble aspirin contains the calcium salt of aspirin.

 Suggest a reagent that could be used to convert aspirin into its calcium salt.

 [2 marks]
- 7. (a) The active component of tear gas is called **CS** and has the following structure

Draw the structures of organic compounds expected to be formed when **CS** reacts with each of the following reagents:

(i) Bromine

[3 marks]

(ii) Hot aqueous sulphuric acid

[3 marks]

(iii) A mixture of concentrated nitric acid and sulphuric acid

[3 marks]

(iv) Hydrogen in the presence of a nickel catalyst

[3 marks]

- (b) **CS** is readily hydrolysed to non-irritant products.
 - (i) Which one of the reagents in (a) would do this? [2 marks]
 - (ii) What types of stereoisomers, if any, are possible for **CS**?

[1 mark]

(c) (i) Explain why propylamine is a stronger base than ammonia

[3 marks]

(ii) Explain why propylamine is classifed as Bronsted-Lowry base. [2 marks]

END OF PAPER