BINDURA UNIVERSITY OF SCIENCE EDUCATION

AMT113

BACHELOR OF APPLIED MATHEMATICS

LINEAR ALGEBRA II

Time: 3 hours

AFT APR 2025

Candidates should attempt ALL questions in section A and at most TWO questions in section B.

SECTION A (40 marks)

Candidates may attempt ALL questions being careful to number them A1 to A6

- A1. Define the following:
 - (a) Rank of a matrix.

[1]

(b) Basis of a vector space.

[2]

A2. (a) Define an inner product space.

[2]

(b) State the axioms of an inner product space.

[2]

- (c) Let \mathbb{R}^4 have the Euclidean inner product. Find the cosine of the angle β between the vectors u=(1,-1,2,0) and v=(0,3,-1,4). [4]
- **A3.** Find the basis and dimension of the subspace W of \mathbb{R}^3 given by:

$$W = \{(x, y, z) \in \mathbb{R}^3 : 2x - y + 3z = 0\}$$

5

A4. Use the Gram-Schmidt process to orthogonalize the vectors $v_1 = (2, 1, 0)$ and $v_2 = (1, -1, 1)$.

[5]

A5. (a) Let $N = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 3 & 2 \\ 0 & 4 & 5 \end{pmatrix}$. Find:

[2]

(a) The row space of N.(b) The column space of N.

2

(c) The null space of N.

[3]

(a) Define a linear combination. A6.

- [2]
- (b) Given the vectors $v_1 = (1, 2, -1)$ and $v_2 = (6, 4, 2)$. Show that $v_3 = (9, 2, 7)$ is a linear combination of v_1 and v_2 .
- (c) Determine which of the following subsets of $\mathrm{Mat}_{3x3}(\mathbb{R})$ are linearly dependent. For those that are, express one vector as a linear combination of the others.

For those that are, express one vector as a fine
$$z$$
 (i) $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix} \begin{bmatrix} -1\\2\\1 \end{bmatrix} \begin{bmatrix} 2\\1\\1 \end{bmatrix} \right\}$. [2]

(ii)
$$\begin{cases} \begin{bmatrix} 1 \\ 0 \end{bmatrix} & \begin{bmatrix} 1 \\ 1 \end{bmatrix} & \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} & \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \end{bmatrix}$$
 [2]

$$\left(\begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} -1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \right) \\
\left(\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \right).$$
[2]

SECTION B (60 marks)

Candidates may attempt TWO questions being careful to number them B7 to B9.

- (a) Two matrices A and B are similar if there is an invertible matrix P such that $B = P^{-1}AP$. Prove that the similarity of matrices is an equivalence relation. [5] B7.
 - (b) Let

$$C = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$$

Find the eigenvalues of C and a basis for the eigenspace of each eigenvalue of

(c) Hence, or otherwise solve the system:

$$y_1' = 4y_1 + y_2$$

$$y_2' = 2y_1 + 3y_2$$

of differential equations involving functions y_1 ; y_2 of the variable t.

- (d) Express the quadratic form $x^2 + 4y^2 + 2xy + 6xz + 4zx$ in the form X^TAX
- **B8.** Let $A = \begin{pmatrix} 5 & 2 \\ 1 & 4 \end{pmatrix}$.

(a) Diagonalize the matrix A.

[10]

9

(b) Solve the system of differential equations

$$\frac{dx}{dt} = 5x + 2y, \quad \frac{dy}{dt} = x + 4y$$

using matrix methods.

[10]

(c) Prove the Cayley-Hamilton Theorem for A and use it to compute A^3

[10]

B9. (a) Define a span of a subspace X.

[3]

- (b) Determine whether the vectors (2,1,0), (1,-1,1), (3,0,1) span the vector space \mathbb{R}^3 .
- (c) Consider the transformation T that transforms 2×1 vectors into 3×1 vectors

$$T\begin{bmatrix} x \\ y \end{bmatrix} \to \begin{bmatrix} 2x + y \\ x - y \\ 4x + 3y \end{bmatrix}$$

Show that T is a linear transformation.

[12]

(d) Let V be a subspace of \mathbb{R}^4 spanned by the vectors $x_1 = (1, 1, 1, 1)$ and $x_2 = (1, 0, 3, 0)$. Find an orthonormal basis of V. [5]