BINDURA UNIVERSITY OF SCIENCE EDUCATION SFM213 ## **HBScSFM** ## FINANCIAL TIME SERIES ANALYSIS - APR 2025 Time: 3 hours Candidates may attempt ALL questions in Section A and at most TWO questions in Section B. Each question should start on a fresh page. ## SECTION A (40 marks) Candidates may attempt ALL questions being careful to number them A1 to A4. - A1. Define the terms: - (a) Long memory. [2] (b) Cointegration. [2] (c) spurious regression. [2] A2. (a) What is the significance of the Value at Risk (VaR). - 4 - (b) How can ones deal with the problem of non-stationarity in time series? - [4] - A3. (a) Distinguish between a causal process and invertible process. - [4] - (b) Determine which of the following ARMA processes are causal and which of them are invertible. (In each case $\{Z_t\}$ denotes white noise). - (i) $X_t + 0.2X_{t-1}0.48X_{t-2} = Z_t$. [4] - (ii) $X_t + 1.9X_{t-1} + 0.88Xt 2 = Z_t + 0.2Z_{t-1} + 0.7Z_{t-2}$. - [4] (iii) $X_t + 0.6X_{t-1} = Z_t + 1.2Z_{t-1}$. - [4] - A4. (a) A commonly used model in finance is the random walk. Define the random walk process. [4] - (b) Compute the ACF of the AR(2) process $X_t = 0.8 X_{t-2} + Z_t$, $\{Z_t\} \sim WN(0, \sigma^2)$. [6] ## SECTION B (60 marks) Candidates may attempt TWO questions being careful to number them B5 to B7. | B5. | (a) Consider the time series model $(1 - 0.7B + 0.8B2)r_t = 0.3 + (1 - 0.5B)a_t$, where $a_t \sim iidN(0;1)$. Is the model stationary? Why? | ere
2] | |-----|---|-------------------| | | (b) Give two situations under which returns of an assert follow an MA(1) model. | [2] | | | (c) Describe two ways by which a GARCH(1,1) model can introduce heavy tails. | | | | (d) Give two reasons by which the return series of an asset tend to contain outliers. | | | | (e) Describe two differences between an AR(1) model and an MA(1) model of a ti series. | | | | (f) Give an advantage of Spearman's over the Pearson correlation. | [2] | | | (g) Give a feature that GARCH-M models have, but the GARCH models do not. | [1] | | | (h) Why is the usual R^2 measure not proper in time series analysis? | [3] | | | (i) Give two real applications of seasonal time series models in finance. | [2] | | | (j) Suppose that the daily simple returns of an asset in week 1 were -0.5% , 1.2 2.5% , -1.0% , and 0.6% . | 2%, | | | (i) What are the corresponding daily log returns? | [4] | | | (ii) What is the weekly simple return of the asset? | [4] | | | | | | B6. | (a) Let r_t denote the daily log return of an asset.
(i) Describe a procedure for testing the existence of serial correlations in r_t . W | hat | | | is the reference distribution of the test statistic used? | [3] | | | (ii) Let μ_t = E(r_t F_{t-1}), where F_{t-1} denotes the information available at time to Write the return as r_t = μ_t + a_t. Describe the null hypothesis for testing ARCH effect of r_t, including definition of the statistics involved in H₀. (iii) Let a_t = σ_tε_t, where σ² = E(a_t² F_{t-1}) and ε_t are iid random variate with m | the
[4]
ean | | | zero and variance 1. Describe a statistic discussed in class for testing the hypothesis that ϵ_t is normally distribution. What is the reference distribut of the test statistic? | ion
[3] | | | (iv) Suppose that σ^2 above satisfies the model $\sigma_t^2 = 0.01 + 0.1a_{t-1}^2 + 0.8\sigma_{t-1}^2$. Compute $E(a_t)$ and $Var(a_t)$. | , 4] | | | (b) Provide two reasons that may lead to serial correlations in the observed asset returns even when the underlying true returns are serially uncorrelated. | [2] | | | (c) Provide two methods that can be used to specify the order of an autoregres time series. | [2] | | | (d) Describe two statistics that can be used to measure dependence between vables. | [3] | | | (e) Provide two volatility models that can be used to model the leverage effect of a returns. | [2] | | | (f) Describe a nice feature and a drawback of using GARCH models to modeling a volatility. | [2] | | | (g) Give two potential impacts on the linear regression analysis if the serial depende
in the residuals is overlooked. | ence
[2] | | | | | - B7. (a) Let X and Y be two random variables with $E(Y) = \mu$ and $EY^2 < \infty$. - (i) Show that the constant c that minimizes $E(Y-c)^2$ is $c=\mu$. [6] - (ii) Deduce that the random variable f(X) that minimizes $$E[(Y - f(X))^2 | X]$$ is $$f(X) = E[Y|X]$$. [4] - (iii) Deduce that the random variable f(X) that minimizes $E(Y f(X))^2$ is also f(X) = E[Y|X]. - (b) Let $\{X_t\}$ be the moving-average process of order 2 given by $X_t = Z_t + \theta Z_{t-2}$, where $\{Z_t\}$ is WN(0,1). - (i) Find the autocovariance and autocorrelation functions for this process when $\theta = 0.8$. [7,5] - (ii) Compute the variance of the sample mean $\frac{X_1 + X_2 + X_3 + X_4}{4}$ when $\theta = 0.8$.