BINDURA UNIVERSITY OF SCIENCE EDUCATION

SFM213

HBScSFM

FINANCIAL TIME SERIES ANALYSIS

- APR 2025

Time: 3 hours

Candidates may attempt ALL questions in Section A and at most TWO questions in Section B. Each question should start on a fresh page.

SECTION A (40 marks)

Candidates may attempt ALL questions being careful to number them A1 to A4.

- A1. Define the terms:
 - (a) Long memory.

[2]

(b) Cointegration.

[2]

(c) spurious regression.

[2]

A2. (a) What is the significance of the Value at Risk (VaR).

- 4
- (b) How can ones deal with the problem of non-stationarity in time series?
- [4]
- A3. (a) Distinguish between a causal process and invertible process.
- [4]
- (b) Determine which of the following ARMA processes are causal and which of them are invertible. (In each case $\{Z_t\}$ denotes white noise).
 - (i) $X_t + 0.2X_{t-1}0.48X_{t-2} = Z_t$.

[4]

- (ii) $X_t + 1.9X_{t-1} + 0.88Xt 2 = Z_t + 0.2Z_{t-1} + 0.7Z_{t-2}$.
- [4]

(iii) $X_t + 0.6X_{t-1} = Z_t + 1.2Z_{t-1}$.

- [4]
- A4. (a) A commonly used model in finance is the random walk. Define the random walk process. [4]
 - (b) Compute the ACF of the AR(2) process $X_t = 0.8 X_{t-2} + Z_t$, $\{Z_t\} \sim WN(0, \sigma^2)$. [6]

SECTION B (60 marks)

Candidates may attempt TWO questions being careful to number them B5 to B7.

B5.	(a) Consider the time series model $(1 - 0.7B + 0.8B2)r_t = 0.3 + (1 - 0.5B)a_t$, where $a_t \sim iidN(0;1)$. Is the model stationary? Why?	ere 2]
	(b) Give two situations under which returns of an assert follow an MA(1) model.	[2]
	(c) Describe two ways by which a GARCH(1,1) model can introduce heavy tails.	
	(d) Give two reasons by which the return series of an asset tend to contain outliers.	
	(e) Describe two differences between an AR(1) model and an MA(1) model of a ti series.	
	(f) Give an advantage of Spearman's over the Pearson correlation.	[2]
	(g) Give a feature that GARCH-M models have, but the GARCH models do not.	[1]
	(h) Why is the usual R^2 measure not proper in time series analysis?	[3]
	(i) Give two real applications of seasonal time series models in finance.	[2]
	(j) Suppose that the daily simple returns of an asset in week 1 were -0.5% , 1.2 2.5% , -1.0% , and 0.6% .	2%,
	(i) What are the corresponding daily log returns?	[4]
	(ii) What is the weekly simple return of the asset?	[4]
B6.	(a) Let r_t denote the daily log return of an asset. (i) Describe a procedure for testing the existence of serial correlations in r_t . W	hat
	is the reference distribution of the test statistic used?	[3]
	 (ii) Let μ_t = E(r_t F_{t-1}), where F_{t-1} denotes the information available at time to Write the return as r_t = μ_t + a_t. Describe the null hypothesis for testing ARCH effect of r_t, including definition of the statistics involved in H₀. (iii) Let a_t = σ_tε_t, where σ² = E(a_t² F_{t-1}) and ε_t are iid random variate with m 	the [4] ean
	zero and variance 1. Describe a statistic discussed in class for testing the hypothesis that ϵ_t is normally distribution. What is the reference distribut of the test statistic?	ion [3]
	(iv) Suppose that σ^2 above satisfies the model $\sigma_t^2 = 0.01 + 0.1a_{t-1}^2 + 0.8\sigma_{t-1}^2$. Compute $E(a_t)$ and $Var(a_t)$.	, 4]
	(b) Provide two reasons that may lead to serial correlations in the observed asset returns even when the underlying true returns are serially uncorrelated.	[2]
	(c) Provide two methods that can be used to specify the order of an autoregres time series.	[2]
	(d) Describe two statistics that can be used to measure dependence between vables.	[3]
	(e) Provide two volatility models that can be used to model the leverage effect of a returns.	[2]
	(f) Describe a nice feature and a drawback of using GARCH models to modeling a volatility.	[2]
	(g) Give two potential impacts on the linear regression analysis if the serial depende in the residuals is overlooked.	ence [2]

- B7. (a) Let X and Y be two random variables with $E(Y) = \mu$ and $EY^2 < \infty$.
 - (i) Show that the constant c that minimizes $E(Y-c)^2$ is $c=\mu$. [6]
 - (ii) Deduce that the random variable f(X) that minimizes

$$E[(Y - f(X))^2 | X]$$

is
$$f(X) = E[Y|X]$$
. [4]

- (iii) Deduce that the random variable f(X) that minimizes $E(Y f(X))^2$ is also f(X) = E[Y|X].
- (b) Let $\{X_t\}$ be the moving-average process of order 2 given by $X_t = Z_t + \theta Z_{t-2}$, where $\{Z_t\}$ is WN(0,1).
 - (i) Find the autocovariance and autocorrelation functions for this process when $\theta = 0.8$. [7,5]
 - (ii) Compute the variance of the sample mean $\frac{X_1 + X_2 + X_3 + X_4}{4}$ when $\theta = 0.8$.