BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF COMMERCE

DEPARTMENT OF ECONOMICS

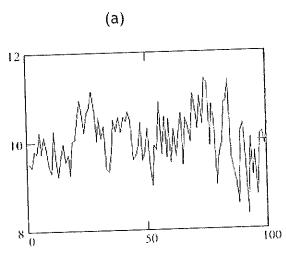
· JUN 2025

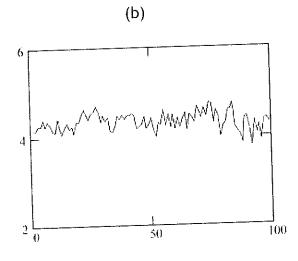
MSc ECONOMICS

ECONOMETRIC PRINCIPLES AND DATA ANALYSIS 2 (MEC 536) (2)

EXAMINATION DURATION: 3 HOURS

TOTAL MARKS: 100


INSTRUCTIONS TO CANDIDATES


- 1. Answer question 1 in Section A and any other three questions from Section B.
- 2. Question 1 carries 40 marks.
- 3. All the questions in Section B carry equal marks of 20 each.
- 4. Cell-phones are not allowed into the examination room.

SECTION A (COMPULSORY)

Ouestion 1

a) The graphs below represent two different time series plots.

- i) Which of the two plots reresents a stationary series and why?
- (5 marks)
- ii) Assign random ordinal values to differentiate the standard deviations of the two (3 marks) plots.

iii) Explain the Box-Cox transformation with reference to the above plots. (4 marks)

b) with the aid of graphs explain each of the following terms as applied in time series econometrics:

i) White noise process.

(5 marks)

ii) Random Walk.

(5 marks)

iii) A deterministic trend process.

(5 marks)

c) Assume the following AR(1) model,

$$x_{t} = px_{t-1} + \varepsilon_{t},$$

where $\epsilon t \sim NID(0, \sigma 2)$,

- i) Explain the differences of performing inference on the estimated p, when p <1.0 and when p=1.0. (6 marks)
- d) i) Explain what is meant by an impluse response function in the context of VAR models.
 - ii) What is the purpose of variance dcomposition in VAR models? (3 marks)

[40 marks]

SECTION B (ANSWER ANY THREE QUESTIONS)

Question 2

a) Detail the Box-Jenkins model selection process.

(11 marks)

- b) Sketch the autocorrelation and partial autocorrelation functions for the following stochastic processes:
 - i. stationary

ii. an ARMA (3,2).

(6 marks)

c) Why is stationarity a useful property in ARIMA model estimation? (3 marks)

[20 marks]

Question 3

a) Birdi and Dunne (2001) consider a log linear relationship based upon a simple Cobb

$$q = a + \alpha k + \beta l + \gamma m$$

Where q is output, k is capital, l is labour and m is military spending, all in logs and all constant prices. Treating this within a VAR estimation framework within Microfit 4.1 (Pesaran and Pesaran, 1997) and starting from an order 4 VAR we get a VAR (2) as the optimal lag length. The order of the VAR is found to be 2 and unrestricted intercepts and no trends gives one cointegrating vector:

$$qm = 1.32 \text{ k} - 1.53 \text{ l} + 0.50 \text{ m}$$

(0.7) (2.1) (0.5)

The underlying ECM model is:

$$\Delta q m_t = 1.96 + 0.55 \ \Delta q m_{t-1} + 1.23 \ \Delta k_{t-1} - 0.84 \ \Delta l_{t-1} - 0.08 \ \Delta m_{t-1} + 0.16 \ ECM_{t-1} - 0.04 \ DS$$

(1.3)

i) What is the short run effect of military spending on growth.

(3 marks)

ii) Explain what they have done and why this approach might be an improvement (8 marks) over simply estimating the aggregate production function?

iii) Interpret and critically evaluate the results.

(6 marks)

iv) Give an interpretation for the error correction term.

(3 marks)

[20 marks]

Question 4

b) An analyst is examining two annual time series, x and z runs two tests in STATA using data from 1901 to 2000 (n=100) as follows.

. dfuller d.x, regress

Engle-Granger test regression

_egresid |

ickey-Fuller	test :	for unit	root		Мито	er of obs	=	98
		est istic	l% Crit: Valu	ical	5% Cri Va	tical	10%	Critical Value
 Z(t)	-1:	5.168	-3	,513	-	2.892		-2.581
acKinnon app								
D2.x	ı	Coef.	std. Err.	t	P> t	[95% C	onf.	Interval]
	1		.0929198				12	-1,224923
	j			2.00	0.048	13594	44	32.79992
. egranger x	z,regr	ess	8.227766 	2.00 				
	z,regr riable	ess _egresio	d		N N	(lst ste J (test)	p) =	= 39 = 700
. egranger x Replacing va	z,regr riable r test	ess _egresio	d	ical.	Ν Ν 5% Cri Vε	(lst ste (test) tical	p) =	= 100 = 99 % Critical Value
. egranger x Replacing va	z,regr riable r test Stat	ess _egresion for coi	d ntegration 1% Crit Val	ical.	N N 5% Cri Vε	(lst ste (test) tical	p) =	= 100 = 99 % Critical
egranger x Replacing var Engle-Grange:	z,regr riable r test Stat	ess _egresic for coin Pest cistic -9.422	d ntegration 1% Crit Val	ical .ue	N N 5% Cri Vε	((1st ste () (test) (tical	p) =	= 100 = 99 & Critical Value
egranger x Replacing var Engle-Grange:	z,regr riable r test Stat	for coincest cistic commacki	d ntegration 1% Crit Val -4 nnon (1990,	ical .ue	N N 5% Cri Vε	((1st ste () (test) (tical	p) =	= 100 = 99 & Critical Value
egranger x Replacing val Engle-Grange: Z(t) Critical val Engle-Grange	z,regr riable r test Stat ues fro	for coincest for c	d ntegration 1% Crit Val -4 nnon (1990,	ical .ue 1.009 2010)	N N 5% Cri Va	(lst ste (test) itical alue -3.399	p) =	= 100 = 99 % Critical Value -3.088

a) What is the purpose of performing the Dickey-Fuller test in this scenario?

(5 marks)

b) What does the Dickey-Fuller test conclude? Refer to the output when justifying (5 marks) your answer.

D._egresid | Coef. Std. Err. t P>|t| [95% Conf. Interval]

Li. | -.9496467 .1007855 -9.42 0.000 -1.149652 -.7496412

c) Explain why he used the Engle-Granger test for cointegration and detail an alternative method which was not relevant in this instance. (5 marks) d) Interpret the results of the cointegration test.

(5 marks)
[20 marks]

Question 5

- a) What is Realized Variance and why is it useful in ARCH and GARCH model estimation? (4 marks)
- b) Suppose we model log-prices at time t, written p_t , as an ARCH(1) process:

$$p_t | \mathcal{F}_{t-1} \sim N(p_{t-1}, \sigma_t^2),$$

where \mathcal{F}_t denotes the information up to and including time t and

$$\sigma_{t}^2 = \alpha + \beta (p_{t-1} - p_{t-2})^2$$

i) What is meant by an ARCH(1) model?

(3 marks)

Is p_t a martingale? Why or why not?

(5 marks)

- ii) How can the ARCH(1) model be generalized to better capture the variance dynamics of asset prices? (4 marks)
- iii) In the ARCH(1) case, what can you say about the properties of

$$p_{t+s}|\mathcal{F}_{t-1}$$
,

for s > 0, i.e., the multi-step ahead forecast of prices?

(4 marks)

[20 marks]

END OF PAPER