Bindura University of Science Education

Faculty of Science Education

Department of Science & Mathematics Education

Programme: HBSc Ed (Mathematics)

AUG 2023

Course: MT314: Mechanics

Duration: Three hours

Semester Examinations

Instructions to candidates

- (i) Answer all questions in Section A and two questions from Section B.
- (ii) Begin each question on a fresh page.

Section A [40 marks].

Answer all questions from this section being careful to number them A1 to A5.

A1. The y-coordinate of a particle is given by $y = 4t^2 - 3t$ where y is in metres and t is in seconds. Also the particle has an acceleration in the x – direction given by $a_x = 12tms^{-2}$. If the velocity of the particle in the x –direction is $4ms^{-1}$ when t = 0, calculate, the magnitude of the velocity, \overrightarrow{v} , and the acceleration, \overrightarrow{a} , of the particle when t = 2s.

A2. Prove that
$$|\vec{v}| = \sqrt{(\dot{r}^2 + (r\dot{\theta})^2)}$$
, where \vec{v} , denotes the velocity in (r, θ) form. [8]

A3. (a). If the scalar field
$$\Omega = xy^2z^3 - x^3y^2z$$
, find $grad\Omega$ at the point $(1, -1, 1)$. [4]

- (b). A car P increases its speed at a constant rate of $1.2ms^{-2}$ as it rounds a curve whose radius of curvature is 200m. If the magnitude of the total acceleration of the car is $1.3ms^{-2}$ determine the velocity of the car.
- **A4.** Prove that the projection of the acceleration on the normal to the path of a particle is equal to the second power of the numerical value of the velocity divided by the radius of curvature [7]
- A5. Prove that the change in linear momentum of a particle in any given interval is equal to the geometric sum of all the forces acting on the particle during that time interval. [5]

Section B: [60 marks]

Answer two questions from this section being careful to number them B6 to B8.

B6. (a). Define the following terms

- (i) Inertia
- (ii) Angular momentum
- (iii) Rigid body

[6]

(b). (i) Find the *curl* for the vector field $\vec{F} = (z, x, y)$.

[5]

(ii) Find the divergence of the vector field $\vec{H} = (x^2, 3y, x^3)$.

[5]

(iii) Find the directional derivative of $\psi = x^2 + y^2 - z$ at P(1,1,-2) in the direction of

$$\vec{n} = (1,1,2).$$

[6]

(c). The position vector of a particle of mass 2kg is given by

 $r=8ti+t^2$ $j-\frac{1}{2}$ $(t^3-1)k$ where t is time in seconds from the start of motion and where r is expressed in metres. For the condition when t=2s, determine the power P developed by a force F=20i-16k which acts on the particle and the angular momentum of the particle.

B7. (a). Distinguish between direct central impact and oblique central impact.

[5]

(b). State and prove Carnot Theorem that characterize the loss of kinetic energy

during collision of a system of bodies.

[15]

- (c). Define the terms;
 - (i). translational motion of a rigid body.

[2]

(ii). rotational motion of a rigid body.

[2]

(d). Prove that in translational motion of a rigid body all particles of the body move along similar

paths and have at any instant the same velocity and the same acceleration.

[6]

B8. (a). A 10 - kg block is moving to right with a velocity of 0.6m/s on a horizontal surface when a force Q is applied to it at time t = 0s. The variation of the force Q with time was that during the interval 0s to 2s, Q = 36N and for the interval 2s to 4s, Q = 72N. The coefficient of kinetic friction, $u_k = 0.3$. Determine the velocity of the block when t = 4s.

(b). (i). Define the term constrained motion.

[3]

(ii). State the Fundamental Law of Dynamics of rigid bodies.

[3]

(iii). A load of weight W starts moving from rest along a smooth horizontal plane under the action of a force of R. The magnitude of R increases proportionally with time, that is, R = kt. Develop the equation of motion for the load. [10]

(c). Prove that the moment about a fixed point O of all the forces acting on a mass M equals the rate of change of angular momentum.

[6]

END OF PAPER