Question 2 | Question 2 a. For a sampling rate of 10 kHz, determine the normalized cutoff (in [Analysis of the sample of 10 kHz.] [Analysis of the sample of 10 kHz.] | 3] | |--|--| | a. For a sampling rate of 10 kHz, determined a radians/sample) for 1 kHz. b. State the choice of filter length N you would use for a simple design, and explain your rationale. c. Write the formula for the ideal impulse response h_d[n] for a low-pass cutoff frequency ω_c = π/10 considering both cases when n≠0 and n=0 | i
[3] | | $\left(\frac{\sin(\alpha t)}{\pi n} n \neq 0\right)$ | [4] | | $h_d[n] = \begin{cases} \frac{\omega_c}{\pi} & n = 0 \\ 0 & \text{otherwise} \end{cases}$ d. Using a rectangular window, indicate how you would reduce $h_d[n]$ to obtain $h[n]$ $[3]$ e. Explain how increasing the filter order N affects the transition bandwidth. f. Explain how it affects the stop-band attenuation. f. Explain how it affects the stop-band attenuation. g. Comment on the computational cost penalty of a higher order. | [2]
[2]
[3] | | Question 3 a. Find a closed-form expression for the Z-transform $X(z) = \sum_{n=0}^{\infty} \sin(n) z^{-n}$ b. State its region of convergence. c. For $H(z) = \frac{z+2}{z^2+1.5z+0.5}$, locate its poles and zeros. d. Sketch the pole-zero plot and use it to assess stability. e. If unstable, propose one modification to $H(z)$ to ensure stability. f. Briefly explain why your modification restores stability. | [4]
[2]
[4]
[3]
[4]
[3] | | Question 4 a. Compute the linear convolution y[n] = x[n] * h[n] for x[n] = {1, 2, 3}, h[n] = {0.5}. b. State the length of the result and explain how you determined it. c. Given impulse response h[n] = 3ⁿu(n), compute the output y[n] for input x[n] = {1, 1, 1}. d. Identify whether this Linear Time Invariant (LTI) system is stable. Justify. e. Define causality for an LTI system in terms of its impulse response. f. Define Bounded Input Bounded output (BIBO) stability in terms of h[n]. | [0, 1,
[4]
[2]
[4]
[3]
[3]
[4] | # BINDURA UNIVERSITY OF SCIENCE EDUCATION - JUN 2025 FACULTY OF SCIENCE AND ENGINEERING DEPARTMENT OF ENGINEERING AND PHYSICS BACHELOR OF SCIENCE DEGREE IN ELECTRONIC ENGINEERING (HBSCEE) EEE3103 (2) DIGITAL SIGNAL PROCESSING DURATION: 3 HOURS TOTAL MARKS: 100 ## INSTRUCTIONS TO CANDIDATES - The paper contains seven (7) questions - Answer any five (5) questions Each question carries 20 marks. #### Question 1 | Question 1 | [2] | |--|--| | a. Define aliasing in discrete-time signals. b. Give one example of an aliasing artifact in c. A signal with maximum frequency 3 kHz in Nyquist-Shannon theorem? State the cond | lition. [3] | | d. Briefly justify your answer in (c). e. If the sampling rate is reduced to 4 kHz, kHz component. f. Describe qualitatively how this alias would | compute the aliased frequency of the 3 | ### Question 5 | a. | For the periodic sequence $x[n] = \{1, -1, 1, -1\}$ with period N = 4, write its DFS | [3] | |----------|---|------------| | | coefficient formula $a_k = \frac{1}{N} \sum x[n] e^{-j\left(\frac{2\pi}{N}\right)kn}$. | [4] | | | Compute the non-zero DFS coefficients u_k . | [4] | | C. | Compute the 8-point DFT of $x[n] = \{1, 2, 3, 4, 5, 0, 0, 0\}$.
State the computational complexity difference between direct DFT and FFT for | N = | | | 8 | | | e. | cut the magnitude spectrum of part d. | [3]
[4] | | f. | - I I I I A DET LAINE INDAMENT THE SIGNAL STITLUCTICA COMPONENTS | F .3 | | | | | | Qι | estion 6 | | | _ | Define an adaptive filter and one typical application. Let $L = E[e^2[n]]$. | [3] | | a.
b. | contact the cost function minimized by the LWO digolithing / The Light | [2]
[4] | | c. | Derive the weight-update equation W[n+1] = W[n] + p e[n] \(\frac{1}{2} \) is the constant of | [2] | | d. | and the formulations received for noise cancellation in a communications received. | [4] | | e.
f. | State one advantage and one drawback of LMS in practical use. | [3] | | 1. | State one days. | | | Ω | uestion 7 | | | | | | | a. | Explain Quadrature Phase Shift Keying (QPSK) modulation, including symbol | [4] | | h | mapping. Sketch its constellation diagram with labeled points (+1+j1, etc.). Sketch its constellation diagram with labeled points (+1+j1, etc.). | [4] | | р.
С. | The Disease Phace Chiff Reving (RPSK) System Over Additive Times Talling | ise | | | (AWGN), write the symbol-error rate, $Pe = Q\sqrt{\frac{2E_b}{N_0}}$ | [4] | | | Compute the Symbol Error Rate (SER), P_e at Signal to Noise Ratio (SNR) = 10 dB | : | | | $D_{-} = O(f20) \approx (use table)$ | | | e | The function of arrar-carrection codes in digital collins. | [3]
·f | | f. | For the Hamming (7,4) code, what is its code rate and the maximum names | [2] | | | errors it can correct in a single code word? | <u>.</u> . |