BINDURA UNIVERSITY OF SCIENCE EDUCATION

MT504

MScED Mathematics

METRIC SPACES AND TOPOLOGY

- JAN 2025

Time: 3 Hours

Candidates should attempt at most Four questions. Marks will be allocated as indicated.

- A1. (a) Define the following terms,
 - (i) Equivalence relation
 - (ii) Partial order.

[2]

- (b) Define R on $N \times N$ by $(a, b) \approx (c, d)$ if ad = bc.
 - (i) Prove that R is an equivalence relation.

[8]

(ii) Let $A = \{1, 2, 3, ... 15\}$. Let \approx be the equivalence relation on $A \times A$ defined by

$$(a,b) \approx (c,d)$$
 if $ad = bc$. Find the equivalence class of (3,2).

[4]

(c) Let X be a metric space with metric d. Show that,

$$d^1 = \frac{d(x,y)}{1 + d(x,y)}$$

is also a metric on X.

[8]

[3]

(d) Let A and B be subsets of a metric space X. Show that, if $A \subset B$ then $\bar{A} \subset \bar{B}$.

[4]

A2. (a) Prove that every Cauchy sequence is bounded.

1. .4

(b) (i) Define the term axiom of extensionality

[2]

(ii) Show using extensionality that for all subsets of some universal set,

$$(A \cup B)^c = A^c \cap B^c$$
.

[4]

(c) Let $X = R^n$ or C^n for $x = (x_1, x_2, ..., x_n)$, $y = (y_1, y_2, ..., y_n)$. Define $d: X \times X \to R^n$ by

$$d(x,y) = \left[\sum_{i=1}^{\infty} (x_i - y_i)^2\right]^{\frac{1}{2}}$$
. Prove that (X,d) is a metric space.

[6]

(d) Is the space C[-1, 1] complete with respect to the metric,

$$d(x,y) = \{ \int_{-1}^{1} |x(t) - y(t)|^2 dt \}^{\frac{1}{2}}?$$

[9] Justify your answer. A3. (a) Show that for any metric space (X, d), [4] $|d(z, y) - d(x, y)| \le d(x, z)$ for all $x, y, z \in X$. (b) Let R be the relation in R defined by $x \sim y$ if and only if x - y is an integer. Prove [6] that ~ is an equivalence relation. (c) Let X be a metric space. If $\{x_n\}$ and $\{y_n\}$ are sequences in X such that $x_n \to x$ and $y_n \to y$, [7] show that $d(x_n, y_n) \rightarrow d(x, y)$. (d) Prove the following property of the Euclidean Norm: $||u + v|| \le ||u|| + ||v||$. [6] (e) The set R of real numbers is not separable. Justify whether the statement is true or false. [2] A4. (a) Let T_1 and T_2 be two topologies on a non-empty set X. Show that $T_1 \cap T_2$ is also a topology [8] on X. [6] (b) Show that the union of two topologies is not necessarily a topology. (c) Let $X = \{a, b, c, d\}$. Determine whether or not each of the following classes of subsets of X is a topology on X, $T_1 = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}\$ $T_2 = \{X, \emptyset, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\}\}$ $T_3 = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c, d\}, \{a, b, c, d\}\}.$ [11]A5. (a) Let X be a metric space. Prove that if G_1 and G_2 are open in X, then $G_1 \cap G_2$ is also open in X. [7] [8] (b) Prove that the space l^p , where $1 \le p \le \infty$ is complete. (c) Let (X, d) and (Y, ρ) be metric spaces and $f: X \to Y$. Prove that the following statements are equivalent, (i) f is continuous on X. (ii) for any open set $G \subset Y$, $f^{-1}(G)$ is open in Y. (iii) for any closed set F in Y, $f^{-1}(F)$ is closed in X. [10][3] A6. (a) Define a contraction on a metric space (X, d). [9] (b) State and prove the contraction mapping theory. (c) Consider the metric space R, with the usual metric and define $f: R \to R$ by $f(x) = (1+x)^{\frac{1}{3}}.$ [4] Show that f(x) is a contraction on [1, 2]. Using an initial guess of $x_0 = 1$, find the fixed point of f(x) correct to 3 decimal places. [9] (ii) Page 2 of 3

,		
	END OF QUESTION PAPER	
:		
		Page 3 of 3