BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF SCIENCE AND ENGINEERING

CHEMISTRY DEPARTMENT

PROGRAM:

MASTER OF SCIENCE EDUCATION DEGREE

JAN 2025

COURSE:

MCH 501

PHYSICAL CHEMISTRY 5

DURATION:

3HRS

ANSWER ANY FOUR (4) QUESTIONS. EACH QUESTIONS CARRIES 25 MARKS.

- 1. (a) What are **extensive** and **intensive** properties, also give one example of each? 4 marks
 - (b) Classify the following processes as spontaneous or non-spontaneous and explain your answer.
 - (i) The reversible isothermal expansion of an ideal gas.
 - (ii) The vaporization of superheated water at 102°C and 1 bar.
 - (iii) The constant pressure melting of ice at its normal freezing point by the addition of an infinitesimal quantity of heat.
 - (iv) The adiabatic expansion of a gas into a vacuum.

4 marks

(c) Derive the Michaelis Menten equation.

10 marks

(d) In the unimolecular isomerization of cyclobutane to butylene, the following values for k_{uni} as a function of cyclobutane pressure were measured:

P_0 (Torr) 1	10	210	390	760
* 0 1 /	.58	10.3	10.8	11.1

Assuming that the Lindemann mechanism accurately describes this reaction, determine k_1 and the ratio k_{-1}/k_2 . 7 marks

2. (a) Derive the work done in an isothermal process

10 marks.

(b) Determine the half-cell reactions and the overall cell reaction, calculate the cell potential, and determine the equilibrium constant at 298.15 K for the cell

$$\mathrm{Cu}(s) \left| \mathrm{Cu}^{2+} \left(aq, a_{Cu^{2+}} = 0.0150 \right) \right| \left| \mathrm{H}^{+} \left(aq, a_{H^{+}} = 0.100 \right) \right| \mathrm{H}_{2}(g) \left| \mathrm{Pt}(s) \right|.$$

Is the cell reaction spontaneous as written?

15 marks

One mole of N_2 at 20.5°C and 6.00 bar undergoes a transformation to the state described by 145°C and 2.75 bar. Calculate ΔS if

$$\frac{C_{p,m}}{\mathrm{J\,mol^{-1}\,K^{-1}}} = 30.81 - 11.87 \times 10^{-3} \frac{T}{\mathrm{K}} + 2.3968 \times 10^{-5} \frac{T^2}{\mathrm{K}^2} - 1.0176 \times 10^{-8} \frac{T^3}{\mathrm{K}^3} \,. \tag{15 marks}$$

- (b) Calculate ΔS if the temperature of 1 mol of an ideal gas with $C_V = 3/2R$ is increased from 150 to 350 K under conditions of (i) constant pressure and (ii) constant volume. **10 marks**
- 4. (a) Define the terms "entropy" and "enthalpy" and explain their relationship to the second law of thermodynamics.

 4 marks
 - (b) A chemical reaction has a ΔH° of -150 kJ and a ΔS° of 200 J/K. Calculate the temperature at which the reaction becomes spontaneous. 3 marks
 - (c) The rate of consumption of B in the reaction A +3B \rightarrow C+2D is 1.0 mol dm⁻³ s⁻¹. State the reaction rate, and the rates of formation or consumption of A, C, and D. 4 marks
 - (d) Write brief notes on the Steady-state approximation. 4 marks
 - (e) Define the following terms:
 - (i) Isocratic conditions
 - (ii) State-function
 - (iii) Junction-potential
 - (iv) Exergonic reactions
 - (v) Endergonic reaction.

10 marks

- 5. (a) In a branching reaction in which two products can be formed from the same reactant, what determines the extent to which one product will be formed over another?

 3 marks
 - (b) What is the overall order of the reaction corresponding to the following rate constants:
 - (c) The growth of a bacterial colony can be modeled as a first-order process in which the probability of cell division is linear with respect to time such that, $\frac{dN}{N} = \zeta dt$, where dN is the number of cells that divide in the time interval dt, and ζ is a constant.
 - (i) Use the preceding expression to show that the number of cells in the colony is given by $N=N_0e^{\zeta t}$, where N is the number of cell colonies and N_0 is the number of colonies present at t=0.

(ii) The generation time is the amount of time it takes for the number of cells to double. Using the answer to part (i), derive an expression for the generation time. 5 marks

(iii) In milk at 37°C, the bacteria lactobacillus acidophilus has a generation time of about 75 min.

Construct a plot of the acidophilus concentration as a function of time for time intervals of 15, 30, 45, 60, 90, 120, and 150 minutes after a colony of size N_0 is introduced to a container 10 marks of milk.

END OF PAPER