BINDURA UNIVERSITY OF SCIENCE EDUCATION

HONOURS DEGREE IN SCIENCE EDUCATION (HBScED)

MT303: Probability Theory and Statistics

Time: 3 hours

Candidates may attempts ALL questions in Section A and at most TWO questions in Section B. Each question should start on fresh page.

SECTION A (40 marks)

Candidate may attempt ALL questions being careful to number them A1 to A5

- A1. Define the following terms:
 - (a) Random experiment,

[2]

(b) Sample space,

[2]

(c) Event.

[2]

- A2. Suppose A and B are independent events, prove that
 - (a) A' and B' are independent

[3]

(b) P(A'|B) = P(A').

[3]

A3. (a) How many different permutations of the letters of the word MATHEMATICS are possible?

[3]

- (b) State the two properties of the legitimacy of a probability mass function, p(x). [2]
- (c) State the Uniqueness Theorem of the moment generating theorem. [3]
- A4. Let X have the probability density function is given by:

 $f(x) = 2^{-|x-1|-1}$

for x = 0, 1, 2

(a) Determine the probability distribution of X in tabular form.

[3] [4]

(b) Find E(X) and Var(X).(c) Find the cumulative distribution function of X.

[3]

A5. (i) Prove the property of memoryless of the exponential random variable.

[5]

(ii) If EX(X-1)=4 for an exponential random variable X, find the value of λ .

[5]

SECTION B (60 Marks)

Candidates may attempt TWO questions being careful to number them B6 to B8.

B6. (a) Let X have the probability density function is given by:

$$f_X(x) = \begin{cases} 2x & 0 \le x \le b \\ 0 & otherwise \end{cases}$$

(i) Sketch the graph of $f_X(x)$.

[3]

(ii) Find and sketch the cumulative frequency of X. [5] (iii) Hence, find $P(0 < X < \frac{1}{2})$. [4]

(b) Let X be a random variable with probability mass function given by:

$$p(x) = \begin{cases} \theta(1-\theta)^{x-1} & if \ x = 1, 2, 3, \dots \\ 0 & otherwise \end{cases}$$

By differentiating with respect to θ both sides of the equation

$$\sum_{x=1}^{\infty} \theta (1-\theta)^{x-1} = 1$$

Show that the mean of the geometric distribution is given by $\frac{1}{\theta}$. [6] (c) State and prove Bayes theorem.

B7. (a) State and prove the Chebyshev's inequality. [12]

(b) If X~B(n,p)
(i) Find the moment generating function of X.
(ii) Hence find E(X) and Var(X).
(c) State and prove the Law of total probability
[4]
[4]
[6]

B8. (a) Let X be a continuous random variable with parameter λ and probability density function given by:

$$f_X(x) = \lambda e^{-\lambda x}, \qquad x > 0. \ \lambda > 0$$

(i) Show that for any positive number s and t, P(X > s + t | X > s) = P(X > t). [10]

(ii) Find λ given that EX(X - 1) = 4.
(b) Let ψ = (-∞; ∞) be the universal set.

Use De Morgan's rule to find ([0,3] [1,5])^c.
(c) State and prove the Bayes' theorem.

END OF THE PAPER