BINDURA UNIVERSITY OF SCIENCE EDUCATION

MT112

Faculty of Science & Engineering

MATHEMATICAL DISCOURSE AND STRUCTURES

Time: 3 hours

F - JUN 2023

Candidates may attempt ALL questions in Section A and at most TWO questions in Section B. Each question should start on a fresh page.

SECTION A (40 marks)

Candidates may attempt ALL questions being careful to number them A1 to A6.

A1. We write $P \downarrow Q$ as an abbreviation for $\neg (P \land Q)$. This connective is called a Sheffer stroke. Use the truth table to verify the following logical equivalence.

$$P \wedge Q \equiv (P \downarrow P) \downarrow (Q \downarrow Q).$$

[4]

[1]

- **A2.** (a) Prove that if A and B are non-empty sets, then $A \times B = B \times A$ iff A = B. [5]
 - (b) Let R be a relation on \mathbb{Z} defined by: mRn iff 5 divides m-n. Show that R is an equivalence relation. [6]
- A3. (a) Let S be any subset of real numbers. Show that the relation in S defined by $x \le y$ is a partial order in S. [3]
 - (b) Let $f: A \to B$ be a function. Define the following.
 - (i) f is surjective.

(ii) f is injective. [1]

(iii) When is f said to be bijective? [1]

- **A4.** (a) If A and B are subsets of set X, and $A B = \{a \in A \mid a \notin B\}$, prove that $A B = A \cap B'$ where B' = X B is the complement of B in X, i.e. $B' = \{x \in X \mid x \notin B\}$. [3]
 - (b) Let $\{A_i\}_{i\in I}$ be an indexed family of sets and B be any set, then show that $B-(\cup_{i\in I}A_i)=\cap_{i\in I}(B-A_i).$ [4]

MT112 **A5.** Let * be a binary operation on \mathbb{Z} defined for $\forall m, n \in \mathbb{Z} : m * n = (m+n)^2$. [3] (a) Discuss whether * is commutative and associative. [4](b) Show whether Z is idempotent with respect to *. **A6.** Use mathematical induction to prove the following statement for every $n \in \mathbb{N}$. $1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}.$ [5] SECTION B (60 marks) Candidates may attempt TWO questions being careful to number them B7 to B9. (a) Show using extensionality that for all subsets of some universal set B7. $(A \cup B)' = A' \cap B'.$ 4 (b) The standard definition of a real sequence $\{S_n\}$ being convergent to a limit l is $\forall \varepsilon > 0 \; \exists \; n_0 \in \mathbb{N}; \; \forall n > n_0, \; |S_n - l| < \varepsilon.$ Write down the formal definition of $\{S_n\}$ not converging to l. [4][4](c) (i) Define a group. (ii) Find out if the mathematical structure $(P(X), \cap, \cup)$ is a ring or not for any [7]non-empty set X. [3] (d) (i) Give the definition of a monoid. (ii) Define the operation on \mathbb{R} by $a \triangle b = a + b + ab$. Show that the binary [4]operation makes \mathbb{R} into a monoid. (iii) Find the invertible elements of R with respect to \triangle . 4

(a) Let A be a set of integers, and let \sim be the relation on $A \times A$ defined by B8. $(a, b) \sim (c, d)$ iff a + d = b + c.

> (i) Prove that \sim is an equivalence relation. [7]

[2] (ii) Suppose $A = \{1, 2, 3 \cdots 8, 9\}$. Find [(2,5)], the equivalence class of (2,5).

(b) Consider the functions $f: A \to B$ and $g: B \to C$. Prove the following.

(i) If $g \circ f$ is one to one, then f is one to one. 3 [4]

(ii) If $g \circ f$ is onto, then g is onto.

(c) If A, B and C are non-empty sets show that

$$(A \cup B) \times C = (A \times C) \cup (B \times C),$$

using axioms of extensionality.

[5]

- (d) Prove that, for any integers a and b the product ab is even if and only if a is even or b is even. [4]
- (e) Use the method of proof by contradiction to show that if $x \in \mathbb{R}$ and $x^2 = 2$, then $x \notin \mathbb{Q}$.
- B9. (a) Distinguish between a tautology and a contradiction.

[2]

(b) The following conditionals and bi-conditionals are tautologies. Construct truth tables to verify each of the laws.

(i)
$$((p \Rightarrow q) \land p) \Rightarrow q$$
. [3]

(ii)
$$[(p \lor q) \land (\neg p)] \Rightarrow q$$
 (Disjunctive syllogism).

[5]

- (c) (i) Test the validity of the following: If I study then I will not fail mathematics.

 If I do not play basketball then I will study. However I failed mathematics therefore I must have played basketball.
 - (ii) Prove whether the following argument is valid or not.

$$p \to \neg q, \ r \to q, \ r \vdash p \neg p.$$

[4]

[5]

(d) Let $A = \{1, 2, 3, 4, 5\}$. Write down the negation of each of the following statements, the truth values of the statements and the negation. Find a counter example for each false statement or false negation.

(i)
$$\exists x \in A : x + 3 = 10$$
, [1]

(ii)
$$\forall x \in A : x + 3 < 10$$
, [2]

(iii)
$$\forall x \in \{2, 3, \dots, 9\}, x + 5 < 12.$$
 [2]

(e) Prove that for each positive integer n, $n! > 2^n$ for $n \ge 4$.

END OF QUESTION PAPER