BINDURA UNIVERSITY OF SCIENCE EDUCATION FACULTY OF SCIENCE & ENGINEERING DEPARTMENT OF OPTOMETRY

" JUN 2025

[4 marks]

[2 marks]

[6 marks]

BACHELOR OF SCIENCE HONOURS DEGREE IN OPTOMETRY

OPTC209: PHYSIOLOGICAL OPTICS II 3 HOURS CANDIDATE NUMBER:	(10	O MARKS)
INSTRUCTIONS: This paper has THREE sections. Attempt ALL questions in all sections		
SECTION A. Attempt all questions. (64 Marks)		
1. What is dark adaptation?		[2 mark]
2. Outline six ocular conditions in which	dark adaptation has proven us	
diagnosis.		[6 marks]
Outline four mechanisms that allows v	ision over a range of light inte	
		[4 marks]
What do you understand by the term P		[2 mark]
How is the duplicity theory of the retina different from weber's law? [4 marks]		
State the Gestalt principles of grouping	g.	[4 marks]
7. Write down the eight cues of monocula		[8 marks]
8. What is the distinction between Stiles-Crawford effect of the first kind and of the		
second kind?		[4 marks]
9. Define the following terms?		[10 marks]
10. Stiles-Crawford effect-1 is attributed t	to what three factors?	[3 marks]
11. What is modulation transfer function?		[2 marks]
12. What is the distinction between luming	ance and brightness?	[3 marks

13. What are the measures of image quality?

14. State two theories of colour vision.

15. State the perceptual constancies.

SECTION B. Choose the most appropriate option from A-D. (26 MARKS)

- 1. Which entoptic phenomenon would be most useful in diagnosing an incipient retinal branch vein occlusion:
 - (A) Haidinger's brushes
 - (B) Moore's Lightning Streaks
 - (C) Purkinje Tree
 - (D) Yellow dancing spots.
- 2. Flashing spots of light reported by a patient in the temporal visual field may indicate:
 - (A) retinal haemorrhage in the nasal retina
 - (B) retinal detachment in the nasal retina
 - (C) vitreous detachment from the nasal retina
 - (D) acute angle closure glaucoma.
- 3. Using relative entoptic parallax, a patient notices one shadow that moves slowly with and another that moves slowly against the direction of the point source. The two opacities are most likely located respectively in:
 - (A) posterior vitreous and cornea
 - (B) central lens and anterior vitreous
 - (C) anterior chamber and anterior vitreous
 - (D) cornea and posterior vitreous.
- 4. Blue arcs of the retina are the result of:
 - (A) leukocytes circulating in the pre-retinal vasculature
 - (B) the presence of a blue-sensitive radial analyser at the macula
 - (C) secondary electrical activity in the retina
 - (D) branch vein occlusion in the retina.
- 5. Patients will usually be "entoptically unaware" of cataracts or corneal opacities because:
 - (A) under everyday lighting conditions, only posterior opacities in the ocular media cast distinct retinal shadows
 - (B) the lenticular halo is only present under darkened conditions, so no retinal shadows will be evident
 - (C) corneal oedema causes the corneal halo to become indistinct
 - (D) the reduced visual acuity caused by these conditions renders retinal shadows indistinct

- 6. The colours seen in a lenticular halo are primarily the result of:
 - (A) interference
 - (B) diffraction at multiple slits (diffraction grating)
 - (C) chromatic aberration
 - (D) diffraction at a circular aperture.
- 7. One way to differentiate a lenticular halo from the halo produced by corneal oedema is to:
 - (A) use the stenopaic slit test
 - (B) view a rotating polarizer through a blue filter
 - (C) use the entoptic perimetry test
 - (D) view a bright blue background through a reticle that divides the visual field into four segments.
- 8. A patient reports the perception of vertical streaks of lightning. When she first noticed them, she also became aware of some floaters. This patient most likely has:
 - (A) macular oedema
 - (B) branch retinal vein occlusion
 - (C) vitreous detachment
 - (D) retinal detachment
- 9. Identify the following statement as a requirement for perfect spatial coherence, perfect temporal coherence, or both: "The light source must be a true point source: which does not exist."
 - (A) Spatial coherence
 - (B) Temporal coherence
 - (C) Spatial and temporal coherence.
 - (D) Neither.
- 10. For total destructive interference to occur when two light waves interact, the waves must be:
 - (A) 180° out of phase
 - (B) Of equal amplitude
 - (C) Of equal amplitude and either 90° or 270° out of phase
 - (D) Of equal amplitude and 180° out of phase

- 11.A positive lens produces convergent light from plane incident waves because:
- (A) the curvature of the lens front surface is greater than the back surface
- (B) refractive index is greater at the center of the lens than the edge
- (C) the lens curvature deviates peripheral parts of waves toward the optical axis
- (D) the lens has greater central thickness than edge thickness.
- 12. A virtual image plane corresponds to:
- (A) the location toward which light rays are converging after refraction by a lens
- (B) the location of a point source to the left of a negative lens
- (C) the centre of curvature of waves diverging in image space
- (D) the centre of curvature of waves converging toward a lens
- 13. An optical system has been corrected for all, but one, monochromatic aberration. The system consists of a positive spherical lens and an aperture stop to the right of the lens. For a monochromatic plane object, this system will produce:
 - (A) Curvature of field
 - (B) Pincushion distortion
 - (C) Barrel distortion
 - (D) Transverse chromatic aberration
- 14. An ametropic eye is spectacle-corrected for distance vision. As the eye rotates around its center of rotation, a surface is traced out that corresponds to "where the retina is actually focused". This surface is:
 - (A) the Far point sphere
- (B) the tangential image shell
- (C) the sagittal image shell
- (D) Petzval's surface
- 15. An ametropic eye is spectacle-corrected for distance vision. As the eye rotates around its centre of rotation, a surface is traced out that corresponds to the location of the image produced by the spectacle lens. This surface is:
 - (A) the Far point sphere
 - (B) the tangential image shell
 - (C) the sagittal image shell
 - (D) Petzval's surface

- 16. A spectacle lens will fully correct oblique astigmatism if:
 - (A) the tangential and sagittal focal lines coincide
 - (B) The spectacle correction has a very high positive power (~ +19 D)
 - (C) Petzval's surface is flat (plane)
 - (D) Petzval's surface matches the far point sphere
- 17. Many patients who have had photorefractive keratectomy (PRK) experience a significant glare problem at night. The basis of the glare problem is primarily:
 - (A) Spherical aberration
 - (B) coma
 - (C) oblique astigmatism
 - (D) chromatic aberration
- 18. The main reason that the Rayleigh criterion breaks down for larger pupil diameters is:
 - (A) the fact that diffraction ceases to occur when pupil diameter exceeds 3.5 mm
 - (B) paraxial defocus
 - (C) chromatic aberration
 - (D) spherical aberration
- 19. A broad slit-lamp beam is directed into the eye of a patient with anterior uveitis. "Aqueous flare" is observed due to the presence of numerous aqueous inflammatory cells in the path of the beam. Aqueous flare is a result of:
 - (A) Rayleigh scatter
 - (B) Mie scatter
 - (C) Diffraction
 - (D) Veiling glare
- 20. The Tyndall Effect allows clinicians to detect "aqueous flare" with a broad slit lamp beam, due to the presence of inflammatory cells. It is the result of:
 - (A) non-directional Rayleigh scatter in the aqueous humor
 - (B) directional Rayleigh scatter in the aqueous humor
 - (C) non-directional Mie scatter in the aqueous humor
 - (D) directional Mie scatter in the aqueous humor.

- 21. Transverse chromatic aberration:
 - (A) increases with aperture diameter at the same rate as transverse spherical aberration, but at a lower rate than longitudinal spherical aberration
 - (B) increases at the same rate with aperture diameter as longitudinal chromatic aberration since both have the same linear dependence on aperture diameter
 - (C) increases with aperture diameter, but not as rapidly as longitudinal spherical aberration
 - (D) increases with aperture diameter, but at a lower rate than longitudinal chromatic aberration.
- 22. The aberration that causes variable transverse magnification with incident height is:
 - (A) spherical aberration
 - (B) coma
 - (C) oblique astigmatism
 - (D) curvature of field
- 23. Two light waves have amplitudes of 4 units and 9 units respectively. The relative intensities of the two waves are:
 - (A) 64 and 243
 - (B) 16 and 81
 - (C) 4 and 9
 - (D) 2 and 3
- 24. Monochromatic light of wavelength 415.4 nm in the vitreous (n = 1.336) elicits the maximum sensitivity response from retinal cones under daylight (photopic) conditions. What wavelength in air will elicit the maximum photopic cone response?
 - (A) 310.9 nm
 - (B) 415.4 nm
 - (C) 555.0 nm
 - (D) 751.4 nm
- 25. What is the frequency of light in vitreous (n = 1.336) that elicits the maximum photopic cone response (λ = 415.4 nm)??
 - (A) 300 THz (3.00×10^{14}) Hz
 - (B) 541 THz (5.41 \times 10¹⁴) Hz
 - (C) 722 THz (7.22×10^{14}) Hz
 - (D) 965 THz (9.65×10^{14}) Hz

26. A virtual image plane corresponds to:

- (A) the location toward which light rays are converging after refraction by a lens
- (B) the location of a point source to the left of a negative lens
- (C) the center of curvature of waves diverging in image space
- (D) the center of curvature of waves converging toward a lens

SECTION C. Attempt all questions in this section your answer booklet. (10 MARKS)

- 1. Enumerate **six** factors that account for inter-subject variability in visual acuity measurement. [6 marks]
- 2. List four phenomena associated with colour sense. Ans.

[4 marks]

END OF PAPER