BINDURA UNIVERSITY OF SCIENCE EDUCATION #### FACULTY OF SCIENCE AND ENGINEERING #### DEPARTMENT OF CHEMISTRY MAIN EXAMINATION PAPER AUG 2023 **DEGREE PROGRAMME:** BSC HONS CHEMICAL TECHNOLOGY COURSE: **INORGANIC CHEMISTRY I (CHT101)** **DURATION:** 2 HOURS #### INSTRUCTIONS TO CANDIDATES - 1. Answer Question 1 and Two questions in Section A and Two from Section B. - 2. Each question should start on a fresh page and marks will be allocated as indicated. # Question 1 - (a) Briefly explain the following statements: - (i) Anions are bigger than the neutral parent atoms. [3 marks] (ii) Cations are smaller than the neutral parent atoms. [3 marks] - (b) Name the following compounds - (i) Na₄[Ni(CN)₆] - (ii) $K_3[Co(CN)_5NO]$ - (iii) K₂[PtCl₅N] - (iv) $K_2[Cr(CN)_2O_2(O_2)NH_3]$ [4 marks] (c) Using the valence bond theory explain the bonding in C=0. [3 marks] (d) Why does a Bonding Molecular Orbital have lower energy that the Atomic Orbitals from which it is constructed? [2 marks] (e) Describe the factors that affect the stability of coordination compounds. [5 marks] ## SECTION A: ANSWER ANY TWO QUESTIONS ## Question 2 Consider H and He⁺ in the ground state. - (a) Which of these two species will require more energy to remove the electron? Explain your answer. [5 marks] - (b) Calculate the energy required to excite the electron from an atom of H in the ground state. [5 marks] - (c) Calculate the energy required to excite the electron from a He⁺ cation in the ground state. [5 marks] - (d) Explain why we cannot calculate the first ionization energy for He. [5 marks] # Question 3 - (a) Describe Rutherford's experiment that showed atoms consisted of a concentrated positive charge with a high mass. Make sure you discuss the observations and the conclusions drawn. [5 marks] - (b) Draw and label a complete the valence molecular orbital energy level diagram for N_2 . [6 marks] - (c) From the MO diagram write the valence orbital occupancy (i.e. electron configuration) for N_2 . [2 marks] - (d) Using the MO diagram briefly explain the effect of adding or removing electrons to N_2 . [2 marks] - (e) Compare and contrast the Molecular Orbital Theory (MOT) and Valence Bond Theory (VBT) in small molecules. [5 marks] #### Question 4 - (a) Explain how Heisenberg's uncertainty principle influences our understanding of the structure of an atom. [5 marks] - (b) Briefly define the terms diamagnetic and paramagnetic, and describe an experiment that would demonstrate whether a substance was diamagnetic or paramagnetic. [5 marks] (c) Briefly explain what is meant by the term "Pauli exclusion principle". How does the Pauli Exclusion Principle apply to electron configurations? [5 marks] (d) Draw diagrams to show the shapes of the five d orbitals. [5 marks] # **SECTION B: ANSWER ANY TWO QUESTIONS** ## Question 5 Give a detailed account of the five factors that affect the crystal field splitting in coordination compounds. [20 marks] ## Question 6 Describe the Molecular Orbital Theory (MOT) and the Valence Bond Theory (VBT) in coordination compounds. [20 marks] ## Question 7 - (a) Draw figure to show the splitting of d orbitals in square planar complex. [4 marks] - (b) Calculate the Spin only for a d^8 metal ion in octahedral, square and tetrahedral complex. [8 marks] - (c) Explain the following terms. - (i) Primary valence - (ii) Secondary valence, - (iii) High-Low spin [3x 2 marks] (d) Distinguish between homoleptic and heteroleptic complexes. [2 marks] ### **END OF EXAMINATION** # PERIODIC TABLE OF ELEMENTS | | | | | | | | | | | | | | | | | | Noble | |-----------------|---------------------|-----------------|-------------|---------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------| | *** | | | | | | | | | | | | | | | | | gases | | Alkal
metal | | | | | | | | | | | | | | | II.l. | | 1 | | 1 | Alkal | ine | | | | | | | | | | | | | Hai | ogens | 10 | | 1A | eart | h | | | | | | | | | | | | | | Ţ | 18
8A | | ¹ H | meta
2 | IS | | | | | | | | | | 13 | 1.4 | 1.5 | 1.0 | 17 | 0A | | 1.008 | 2A | | | | 3257 | | | | | | | 3A | 14
4A | - 5 | 16
6A | 17
7A | He
4.003 | | 3 : | 4 | | | | | | | | | | | 115 | 6 | 7 | 8 | 9 | 10 | | Li
6.941 | Be
9.012 | 8 | | | | | | | | | | B 10.8 | C
1 12.0 | N
1 14.01 | O
16.00 | F
19.00 | Ne | | 11 | 12 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | | 16 | 17 | 18 | | Na
22.99 | Mg
24.31 | , | 7 | 5 | 1000 | nsitio | - | | 10 | 11 | 12 | Al
26.98 | Si
28.09 | P
30.97 | S
32.07 | Cl
35.45 | Ar
39.95 | | ¹⁹ K | Ca | Sc Sc | Ti | ^{23}V | Cr | 25 | 26 | 27 | 28 | 29 | 30 | 31 | Ge | 33 | 34 | 35 | 36 | | 39.10 | 40.08 | 44.96 | 47.88 | 50.94 | 52.00 | Mn
54.94 | Fe
55.85 | Co
58.93 | Ni
58.69 | Cu
63.55 | Zn
65.38 | Ga
69.72 | Ge
72.59 | As
74.92 | Se
78.96 | Br
79.90 | Kr
83.80 | | Rb | 38 | ³⁹ Y | 40 | 41
NIL | 42 | 43 | 44
D | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | | 35.47 | Sr
87.62 | 88.91 | Zr
91.22 | Nb
92.91 | Mo
95.94 | Tc (98) | Ru
101.1 | Rh
102.9 | Pd
106.4 | Ag
107.9 | Cd | In
114.8 | Sn
118.7 | Sb
121.8 | Te
127.6 | 1
126.9 | Xe
131.3 | | Cs Cs | Ba | 57 * | Hf | ⁷³
Та | 74
W | Re | 76 | 77
I | 78
D4 | 79 | 80 | 81 | 82
D1 | 83 | 84 | 85 | 86 | | 132.9 | 137.3 | La
138.9 | 178.5 | 180.9 | 183.9 | 186.2 | Os
190.2 | Ir
192.2 | Pt
195.1 | Au
197.0 | Hg
200.6 | T1
204.4 | Pb
207.2 | | Po (209) | At (210) | Rn
(222) | | Fr Fr | ⁸⁸
Ra | 89 ** | 104
Rf | Db | 106
Sg | 107
Bh | 108
Hs | 109 | 110 | 111 | 112 | | | | | | | | (223) | 226 | Ac
(227) | KI | טט | Sg | DII | ПS | Mt | Uun | Uuu | Uub | | me | tals | | no | nmetals | | | | | | | | | _ | | | | | l. | | | | | | | * | T | |---|-------------| | | Lanthanides | ^{**}Actinides | Ce
140.1 | 59
Pr
140.9 | Nd
144.2 | Pm
(145) | Sm
150.4 | Eu
152.0 | 64
Gd
157.3 | 65
Tb
158.9 | Dy
162.5 | Ho
164.9 | 68
Er
167.3 | ⁶⁹
Tm
_{168.9} | 70
Yb
173.0 | 71
Lu
175.0 | |-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---|-------------------|-------------------| | 90
Th
232.0 | Pa
(231) | 92
U
238.0 | 93
Np
(237) | 94
Pu
(244) | 95
Am
(243) | 96
Cm
(247) | 97
Bk
(247) | 98
Cf
(251) | 99
Es
(252) | Fm
(257) | 101
Md
(258) | No
(259) | Lr | | Constant | Symbol | Computational Value | | | | | |--------------------------------|----------------|--|--|--|--|--| | Avogadro's constant | N _A | 6.022x10 ²³ mol ⁻¹ | | | | | | Planck's constant | h | 6.63x10 ⁻³⁴ J.s | | | | | | | ħ | 1.603x10 ⁻³⁴ J.s | | | | | | Rydberg constant | R | 2.18x10 ⁻¹⁸ J | | | | | | Universal Gas constant | R | 0.08206 L.atm/K.mol OR | | | | | | | | 8.314 J/K.mol | | | | | | Specific Heat Capacity (Water) | S | 4.184 J/g.°C | | | | | | Speed of light in vacuum | C | 3.00x10 ⁸ m/s | | | | | | Faraday's Constant | F | 9.648x10 ⁴ C/mol | | | | | | Electron charge | e | 1.602x10 ⁻¹⁹ C | | | | |