BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF CHEMISTRY

MAIN EXAMINATION PAPER

AUG 2023

DEGREE PROGRAMME:

BSC HONS CHEMICAL TECHNOLOGY

COURSE:

INORGANIC CHEMISTRY I (CHT101)

DURATION:

2 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. Answer Question 1 and Two questions in Section A and Two from Section B.
- 2. Each question should start on a fresh page and marks will be allocated as indicated.

Question 1

- (a) Briefly explain the following statements:
- (i) Anions are bigger than the neutral parent atoms.

[3 marks]

(ii) Cations are smaller than the neutral parent atoms.

[3 marks]

- (b) Name the following compounds
- (i) Na₄[Ni(CN)₆]
- (ii) $K_3[Co(CN)_5NO]$
- (iii) K₂[PtCl₅N]
- (iv) $K_2[Cr(CN)_2O_2(O_2)NH_3]$

[4 marks]

(c) Using the valence bond theory explain the bonding in C=0.

[3 marks]

(d) Why does a Bonding Molecular Orbital have lower energy that the Atomic Orbitals

from which it is constructed?

[2 marks]

(e) Describe the factors that affect the stability of coordination compounds. [5 marks]

SECTION A: ANSWER ANY TWO QUESTIONS

Question 2

Consider H and He⁺ in the ground state.

- (a) Which of these two species will require more energy to remove the electron? Explain your answer. [5 marks]
- (b) Calculate the energy required to excite the electron from an atom of H in the ground state. [5 marks]
- (c) Calculate the energy required to excite the electron from a He⁺ cation in the ground state. [5 marks]
- (d) Explain why we cannot calculate the first ionization energy for He. [5 marks]

Question 3

- (a) Describe Rutherford's experiment that showed atoms consisted of a concentrated positive charge with a high mass. Make sure you discuss the observations and the conclusions drawn. [5 marks]
- (b) Draw and label a complete the valence molecular orbital energy level diagram for N_2 .

 [6 marks]
- (c) From the MO diagram write the valence orbital occupancy (i.e. electron configuration) for N_2 . [2 marks]
- (d) Using the MO diagram briefly explain the effect of adding or removing electrons to N_2 . [2 marks]
- (e) Compare and contrast the Molecular Orbital Theory (MOT) and Valence Bond Theory (VBT) in small molecules. [5 marks]

Question 4

- (a) Explain how Heisenberg's uncertainty principle influences our understanding of the structure of an atom. [5 marks]
- (b) Briefly define the terms diamagnetic and paramagnetic, and describe an experiment that would demonstrate whether a substance was diamagnetic or paramagnetic.

[5 marks]

(c) Briefly explain what is meant by the term "Pauli exclusion principle". How does the Pauli Exclusion Principle apply to electron configurations? [5 marks]

(d) Draw diagrams to show the shapes of the five d orbitals.

[5 marks]

SECTION B: ANSWER ANY TWO QUESTIONS

Question 5

Give a detailed account of the five factors that affect the crystal field splitting in coordination compounds. [20 marks]

Question 6

Describe the Molecular Orbital Theory (MOT) and the Valence Bond Theory (VBT) in coordination compounds. [20 marks]

Question 7

- (a) Draw figure to show the splitting of d orbitals in square planar complex. [4 marks]
- (b) Calculate the Spin only for a d^8 metal ion in octahedral, square and tetrahedral complex. [8 marks]
- (c) Explain the following terms.
- (i) Primary valence
- (ii) Secondary valence,
- (iii) High-Low spin

[3x 2 marks]

(d) Distinguish between homoleptic and heteroleptic complexes.

[2 marks]

END OF EXAMINATION

PERIODIC TABLE OF ELEMENTS

																	Noble
***																	gases
Alkal metal															II.l.		1
1	Alkal	ine													Hai	ogens	10
1A	eart	h														Ţ	18 8A
¹ H	meta 2	IS										13	1.4	1.5	1.0	17	0A
1.008	2A				3257							3A	14 4A	- 5	16 6A	17 7A	He 4.003
3 :	4											115	6	7	8	9	10
Li 6.941	Be 9.012	8										B 10.8	C 1 12.0	N 1 14.01	O 16.00	F 19.00	Ne
11	12	3	4	5	6	7	8	9	10	11	12	13	14		16	17	18
Na 22.99	Mg 24.31	,	7	5	1000	nsitio	-		10	11	12	Al 26.98	Si 28.09	P 30.97	S 32.07	Cl 35.45	Ar 39.95
¹⁹ K	Ca	Sc Sc	Ti	^{23}V	Cr	25	26	27	28	29	30	31	Ge	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.38	Ga 69.72	Ge 72.59	As 74.92	Se 78.96	Br 79.90	Kr 83.80
Rb	38	³⁹ Y	40	41 NIL	42	43	44 D	45	46	47	48	49	50	51	52	53	54
35.47	Sr 87.62	88.91	Zr 91.22	Nb 92.91	Mo 95.94	Tc (98)	Ru 101.1	Rh 102.9	Pd 106.4	Ag 107.9	Cd	In 114.8	Sn 118.7	Sb 121.8	Te 127.6	1 126.9	Xe 131.3
Cs Cs	Ba	57 *	Hf	⁷³ Та	74 W	Re	76	77 I	78 D4	79	80	81	82 D1	83	84	85	86
132.9	137.3	La 138.9	178.5	180.9	183.9	186.2	Os 190.2	Ir 192.2	Pt 195.1	Au 197.0	Hg 200.6	T1 204.4	Pb 207.2		Po (209)	At (210)	Rn (222)
Fr Fr	⁸⁸ Ra	89 **	104 Rf	Db	106 Sg	107 Bh	108 Hs	109	110	111	112						
(223)	226	Ac (227)	KI	טט	Sg	DII	ПS	Mt	Uun	Uuu	Uub		me	tals		no	nmetals
							_					l.					

*	T
	Lanthanides

^{**}Actinides

Ce 140.1	59 Pr 140.9	Nd 144.2	Pm (145)	Sm 150.4	Eu 152.0	64 Gd 157.3	65 Tb 158.9	Dy 162.5	Ho 164.9	68 Er 167.3	⁶⁹ Tm _{168.9}	70 Yb 173.0	71 Lu 175.0
90 Th 232.0	Pa (231)	92 U 238.0	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	Fm (257)	101 Md (258)	No (259)	Lr

Constant	Symbol	Computational Value				
Avogadro's constant	N _A	6.022x10 ²³ mol ⁻¹				
Planck's constant	h	6.63x10 ⁻³⁴ J.s				
	ħ	1.603x10 ⁻³⁴ J.s				
Rydberg constant	R	2.18x10 ⁻¹⁸ J				
Universal Gas constant	R	0.08206 L.atm/K.mol OR				
		8.314 J/K.mol				
Specific Heat Capacity (Water)	S	4.184 J/g.°C				
Speed of light in vacuum	C	3.00x10 ⁸ m/s				
Faraday's Constant	F	9.648x10 ⁴ C/mol				
Electron charge	e	1.602x10 ⁻¹⁹ C				