FACULTY OF SCIENCE EDUCATION

DEPARTMENT OF ENGINEERING

AND PHYSICS

Bachelor of Science Honours Degree in Electronic Engineering EEE2209/EEE3205 - CONTROL ENGINNERING []

Time Allowed: 3 Hours

Total Marks: 100

Special Requirements: Scientific Calculator, rule, pen, pencil

INSTRUCTIONS

1. Answer any FIVE (5) questions

2. The question paper contains SEVEN (7) questions

2. Each question carries 20 marks

* OCT 2012H

- 1(a) What is feedback. What type of feedback is employed in control system. [2]
- (b) With the aid of a block diagram state the components of a closed loop control system.

[4] [4]

- (c) State the function of each component in (a) above.
- (d) Explain why negative feedback is invariably preferred in a closed loop control system.

131

- (e) Compare and contrast open loop control system to closed loop control system.[7]
- 2(a)(i) What is the significance of standard test signals in control systems. [2](ii)With the aid of mathematical equations or waveform diagram, define step input test signal. [3]
- (b) Determine the ratio $\frac{C(s)}{R(s)}$ of the block diagram shown below. [3]

(c) Sketch then polar for the control system having the transfer function. [12]

$$G(s) = \frac{1}{(1+0.1s)}$$

3(a) Find the transfer function of the system shown in Fig. below using Mason's gain formula. [8]

(b) With the aid of diagrams define the following Signal Flow Rules

(i)Addition Rule [2]

(ii)Transmission rule [2]

(iii)Multiplication Rule [2]

(c) Find Laplace Transform of $Sin \omega t$ [6]

4(a)Discuss the following basic elements of Signal Flow graph (SFG) with the aid of diagrams

(i)Feedback loop [2]

(ii) Self-loop [2]

[2] [2]

(b)(i) For the three connected as shown below, show that $\frac{C(s)}{R(s)} = G_1(s) - G_2(s) + G_3(s)$.

(i) Draw the equivalent block diagram.

[2]

(c) A resistor, capacitor, and inductor are connected in series. A dc voltage of 10 V is applied through a battery with low internal impedance. The current i in the circuit is given by the following differential equation:

$$v = L\frac{di}{dt} + Ri + \frac{1}{C} \int_0^1 i dt$$

All initial conditions are zero; that is, at time t =0, there is no magnetic field across the inductor, no charge on the capacitor, and no current through the resistor. Determine a general expression for current, which is valid for all values of time greater than or equal to 0 s. Below is the circuit diagram. [6]

5(a) Determine the poles and zeros of the closed-loop system.

[5]

$$G_1(s) = \frac{0.1s+1}{s}, \quad G_2(s) = \frac{s+1}{s^2+2s+4}$$

 $G_1(s)=\frac{0.1s+1}{s}, \quad G_2(s)=\frac{s+1}{s^2+2s+4}$ (b) Determine the characteristic equation of the following system: $G(s)=\frac{12}{s(s^2+4s+2)} \text{ and } H(s)=0.5$

[2]

$$G(s) = \frac{12}{s(s^2+4s+2)}$$
 and $H(s) = 0.5$

(c) State Routh Stability Criterion.

[2]

- (d) Examine the stability of $s^5 + 6s^4 + 3s^3 + 2s^2 + s + 1 = 0$ using Routh Stability Criterion. [8]
 - (e) Find the Laplace transform of a unit step signal.

[3]

- **6 (a)** Find the error coefficients of a system having $G(s)H(s) = \frac{(s+3)}{\frac{(s+3)}{s(1+0.60s)(1+0.35s)}}$ [3]
- (b) Calculate the frequency response of the following system over a frequency range of 0.01 to 10 rad/s. [17]
- **7(a)**If the transfer function of a system and applied input to it are e^{-3t} and e^{-4t} , find the response of the system. [3]
- (b) What are static error constants with reference to Time Domain response. [3]
- (c) A unity feedback system has an open loop transfer function of $G(s) = \frac{10}{(s+1)(s+2)}$ Determine steady state error for unit step signal input. [4]
- (d) Find C(s)/R(s) of the block diagram shown

[6]

(e) A closed loop thermostatically controlled electric oven in the kitchen of a house is shown below. Describe its operation. [4]

The End