BINDURA UNIVERSITY OF SCIENCE EDUCATION MT513

MScED Mathematics

FUNCTIONAL ANALYSIS

Time: 3 Hours

Candidates should attempt at most Four questions. Marks will be allocated as indicated.

,	
A1. (a) Define the following terms	
(i) a metric space on a set X.	[2]
(ii) Cauchy sequence.	[1]
(iii) l^p space.	[2]
(b) Consider the space (X, ρ) where $\rho(x, y) = \sqrt{ x - y }$. Prove that (X, ρ) is a metric space.	[8]
(c) Define R on $N \times N$ by $(a, b) \approx (c, d)$ if $ad = bc$.	
(i) Prove that R is an equivalence relation.	[8]
(ii) Let $A = \{1, 2, 3, 15\}$. Let \approx be the equivalence relation on $A \times A$ defined by	
$(a,b) \approx (c,d)$ if $ad = bc$. Find the equivalence class of (3,2).	[4]
A2. (a) Let V be a vector space over R. Define the inner product $<.,.>$ on V.	[5]
(b) Prove that every inner product space is a normed linear space.	[10]
(c) State and prove the Cauchy-Bunyakovsky theory.	[10]
A3. (a) State and prove Holder inequality.	[9]
(b) Prove that the open ball $B(x_0, \varepsilon)$ is an open set.	[6]
(c) Is the space $C[-1, 1]$ complete with respect to the metric	
$d(x,y) = \{ \int_{-1}^{1} x(t) - y(t) ^2 dt \}^{\frac{1}{2}}?$	
Justify your answer.	[10]
A4. (a) State without proof the characterisation of best approximation theory.	[2]
(b) Let X, Y be normed linear spaces over F and $T \in B(X, Y)$, then prove that	
$ T = Sup\left\{\frac{ T_x }{ T }\right\}, x \in X \setminus 0.$	
	[7]
(c) If a sequence (X_n) in an inner product space converges to x, then it converges weakly.	[7]
(d) Prove that the Euclidean n-space \mathbb{R}^n is complete.	[9]

- A5. (a) For any sets A and B prove that
 - (i) $(A-B) \cap B = \emptyset$.

[4]

(ii) $(A \cap B)^c = A^c \cup B^c$.

[6]

(b) For any give sets M and N show that $M \times N = \emptyset$, if and only if $M = \emptyset$ and $N = \emptyset$.

[8]

(c) If T_n is a sequence of bounded linear operators from a Banach space X into a normed linear space Y. Prove that if T_n is strongly convergent to an operator T, then T is a bounded linear operator.

[7]

A6. (a) Let R be the relation in R defined by $x \sim y$ if and only if x - y is an integer. Prove that \sim is an equivalence relation.

[7]

(b) Prove that the space C[a, b] define a metric space.

[8]

[10]

(c) Let H be a Hilbert space and M a closed subspace of H. For each $x \in H/M$, show that there is a unique element $y_0 \in M$: $||x - y_0|| = inf_{y \in M} ||x - y||$.

END OF QUESTION PAPER