BINDURA UNIVERSITY OF SCIENCE EDUCATION

PHYSICS AND ENGINEERING DEPARTMENT

PH103: ELECTRICITY AND MAGNETISM

DURATION: THREE HOURS

Answer **ALL** parts of Section A and any **THREE** questions from Section B. Section A carries 40 marks and Section B carries 60 marks.

Electronic charge, $q = 1.6 \times 10^{-19} \text{ C}$ Permittivity of free space, $\varepsilon_0 = 8.85 \times 10^{-12} \text{ Fm}^{-1}$ Permeability of free space, $\mu_0 = 4\pi x 10^{-7} \text{ Hm}^{-1}$ Mass of electron, $m_e = 9.11 \times 10^{-31} \text{ kg}$ Mass of proton, $m_p = 1.67 \times 10^{-27} \text{ kg}$ Avogadro constant, $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$ Universal Gravitation Constant, $G = 6.67 \times 10^{-11} \text{ Nm}^2 \text{kg}^{-2}$ Acceleration due to gravity, $g = 9.81 \text{ ms}^{-2}$

SECTION A

1. (a) (i) State Coulomb's law of electrostatics in its vector form, defining all symbols used. [6] (ii) Two charges $q_1 = 4\mu C$ and $q_2 = 3\mu C$ are fixed in place, with a separation r = 3m. Calculate the Coulomb force between them. [3] (b) Given that 1kJ is required to carry a 10C charge from one point to the other, what is the potential difference between these two points? [3] (c) A 90 pF capacitor is connected to a 12V battery and charged to 12V. How many electrons are transferred from one plate to another? [5] (d) Three $20\mu C$ charges are placed on the corners of a square of side 2m. Calculate: (i) the potential V at the fourth, unoccupied corner of the square, and [3] (ii) the work needed to bring the fourth positive charge of $20\mu C$ from infinity and place it on the fourth corner of the square. [3] (e) A solenoid is 30 cm long with 1000 turns per metre and carries a current

- of 5.0 A. What is the magnitude of the *magnetic field* through the centre of this solenoid?
- [3]
- (f) A wire carries a current of 10 A in a direction that makes an angle of 30° with the direction of the magnetic field of strength 0.3 T. Find the magnitude of the force on a 5 m length of the wire.
- (g) A series LCR circuit with L = 2 H, C = 2 μ F and R = 20 Ω is driven by an ac source of maximum emf, 100 V and of variable frequency. Find:
 - (i) the resonance frequency ω_0 ,

[2]

(ii) the maximum current I_{max} when the ac source angular frequency is 400 rads^{-1} , and

[7]

(iii) the phase ϕ .

[2]

SECTION B

2. (a) Write down and explain three main characteristics for each of the RLC series and parallel circuits.

[6]

(b) State Kirchhoff's junction and loop rules.

[4]

(c) Use Kirchhoff's junction and loop rules to find the currents flowing through the two cells (in Figure 2.1), indicating their directions on a diagram. [10]

Figure 2.1. An electric circuit.

Figure 3.1. Three point charges.

(a) Find the components of the force \vec{F}_{23} exerted by q_2 on q_3 . [5] (b) Find the components of the force \vec{F}_{13} exerted by q_1 on q_3 . [5]

[10]

[3]

(c) Find the resultant force on q₃, in terms of components and also in terms of magnitude and direction.

4. (a) A 15 cm diameter circular loop of wire is placed in a 0.50 T magnetic field.

- (i) When the plane of the loop is perpendicular to the field lines, what is the magnetic flux through the loop? [3]
- (ii) The plane of the loop is rotated until it makes a 35 0 angle with the field lines. What is the angle θ in the equation $\Phi_{B} = BA \cos \theta$ for this situation? [2]
- (iii) What is the magnetic flux through the loop at this angle? [3]
- (b) A generator rotates at 85 Hz in a magnetic field of 0.030 T. It has 1000 turns and produces an rms voltage of 150 V and an rms current of 70.0 A.
 - (i) What is the peak current produced? [3]
 - (ii) What is the area of each turn of the coil? [3]

(c) An LCR circuit has L = 14.8 mH and $R = 4.40 \Omega$.

- (i) What value must C have to produce resonance at 3600 Hz? [3]
- (ii) What will be the maximum current at resonance if the peak external voltage is 150 V?

5. (a) Define electric flux. [2]

(b) State Gauss' law in words and in its mathematical form. [5]

(c) Consider a uniform electric field oriented in the x-direction. Find the electric flux through each surface of a cube with edges L oriented as shown in Fig. 5.1, and the net flux. [13]

Figure 5.1. Electric flux through a cube.

- **6.** (a) Explain the similarities and differences between electric forces and gravitational forces. [6]
 - (b) A 90 pF capacitor is connected to a 12V battery and charged to 12V. How many electrons are transferred from one plate to another? [4]
 - (c) Four $2 \mu F$ capacitors are connected as shown in Figure 6.1.

Figure 6.1. Electric circuit.

Calculate the total capacitance.

[10]

END OF EXAMINATION