BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF COMMERCE

DEPARTMENT OF HUMAN RESOURCES MANAGEMENT Course: HCM102/BS102 Quantitative Analysis for Business I (3) **Duration: 3 HOURS**

INSTRUCTIONS FOR CANDIDATES

1. Answer any two questions from section A and any two questions from section B.

INFORMATION FOR CANDIDATES

- 1. All questions carry equal marks.
- 2. No unauthorised items must be brought into the examination room.

MATERIALS ALLOWED

- 1. Scientific Calculator
- 2. Statistical Booklet
- 3. Graph Paper

SECTION A: Answer any **two** Questions

QUESTION 1

Given the following data set

1	12	8	16	6	9	4	7	20	10
3	11	18	12	8	10	2	9	13	22
3	7	9	17	17	23	6	9	11	2
15	5	7	4	14	28	8	19	25	10

Required:

a) Group the data into classes 0 < 5, 5 < 10, 10 < 15, 15 < 20, 20 < 25, 25 < 30(5)

b) Construct

(5)i) a histogram

(5)ii) a frequency polygon (5)iii) a more than ogive curve

(5)

iv) a stem and leaf plot

QUESTION 2

Class Interval	Frequency		
0-< 5	3		
5-<10	5		
10-<15	7		
15-<20	6		
20-<25	2		

Calculate:

i) Mean age	(5)
ii) Median age	(5)
iii) Standard Deviation	(5)
iv) the co-efficient of variation	(5)
v) Pearson's Coefficient of Skewness ad comment	(5)

[25]

QUESTION 3

a) The lifetime of an experimental energy –savings device has an exponential distribution with a mean of 2 years and its cumulative distribution function given by $P(X=x) = 1 - e^{-\frac{x}{\theta}}$

i) what is the probability that the device will last more than 3 years. (5)

ii) what is the probability that the device will last less than 2 years. (5)

b) A luxury passenger liner has 500 passengers on whose ages are normally distributed around a mean of a mean of 60 years with a standard deviation of 12 years. How many passengers are

i) between 45 and 78 years old. (5)

ii) older than 78 years. (5)

iii) younger than 45 years. (5)

[25]

Section B: Answer any two Questions

QUESTION 4

a) Solve the system of equations

$$2x_1 + 4x_2 = 16$$

$$3x_1 - 5x_2 = -9$$

using Cramer's Rule to find x_1 and x_2

(10)

b) Solve the system of equations

$$4X_1 - 3X_2 + 3X_3 = 8$$

$$-2X_1 + 5X_2 + X_3 = 4$$

$$3X_1 + 2X_2 + 4X_3 = 2$$

using Cramer's rule to find X₁ X₂ and X₃

(15)

[25]

QUESTION 5

a) Given the supply and demand functions

$$P = 2Q^2 s + 10Qs + 10$$

$$P = -Q^2 D - 5QD + 52$$

Calculate the equilibrium price and quantity.

(10)

b) If fixed costs are 25, variable costs per unit are 2 and the demand function is

$$P = 20 - Q$$

obtain an expression for π in terms of Q and hence sketch its graph.

- (a) Find the levels of output which give a profit of 31.
- **(b)** Find the maximum profit and the value of *Q* at which it is achieved.

(15)

[25]

QUESTION 6

- a) A principal sum of \$5000 is invested at annual interest rate of 6%. Find the future value of this sum after 5 years if the interest rate is:
- ii) compounded monthly

(5)

iii) compounded continuously

(5)

- b) You are invited to invest \$5000 in a project that is guaranteed to yield \$5 800 after 4 years. The market rate of interest is 5% and is compounded continuously. Evaluate whether the investment should be undertaken using :
- i) the net present value (NPV) approach.

(5)

ii) the internal rate of return (IRR) approach.

(5)

c) Share prices rise by 32% during the first half of the year and rise by a further 10% during the second half. What is the overall percentage change. (5)

[25]

End of Paper