Bindura University of Science Education

Programmes: HBSc Ed (Mathematics)

Course: MT314: Mechanics

Duration: Three hours

Semester Examinations

Instructions to candidates

. E JAN 2025

- (i) Answer all questions in Section A and two questions from Section B.
- (ii) Begin each question on a fresh page.

Section A [40 marks].

Answer all questions from this section being careful to number them A1 to A5.

- A1. The y-coordinate of a particle is given by $y = 4t^2 3t$ where y is in metres and t is in seconds. Also, the particle has an acceleration in the in the x direction is given by $a_x = 12tms^{-2}$. If the velocity of the particle in the x direction is $4ms^{-1}$ when t = 0, calculate, the magnitude of the velocity, \overrightarrow{v} , and the acceleration, \overrightarrow{a} , of the particle when t = 2s.
- A2. Prove that $|\vec{v}| = \sqrt{(\dot{r}^2 + (r\dot{\theta})^2)}$, where \vec{v} , denotes the velocity in (r, θ) form.
- A3. Prove the change in linear momentum of a body in any given interval is equal to the geometric sum of the impulses of all the forces acting on the particle during that time interval.

[8]

- A4.(a) Define the terms:
 - (i). virtual displacement [3]
 - (ii). virtual work
 - (b). State the necessary and sufficient condition for the equilibrium of a system of bodies subjected to ideal constraints. [3]
- A5. Prove that the change in linear momentum of a particle in any given interval is equal to the geometric sum of all the forces acting on the particle during that time interval. [5]

Section B. [60 marks]

Answer two questions from this section being careful to number them B5 to B7.

- B5. (a). The y-coordinate of a particle is given by y = 4t² 3t where y is in metres and t is in seconds. Also the particle has an acceleration in the x direction given by a_x = 12tms⁻². If the velocity of the particle in the x direction is 4ms⁻¹ when t = 0, calculate, the magnitude of the velocity, v, and the acceleration, a, of the particle when t = 2s.
 [10]
 (b). Distinguish between rotational motion and translational motion of a rigid body.
 - (c). Prove that in translational motion of a rigid body all particles of the body move along similar paths and have at any instant the same velocity and acceleration. [8]
 - (d). The equation of motion of an accelerated wheel is $\theta = \frac{9}{32}t^3$. Determine the linear velocity and acceleration of a point lying at a distance r = 0.8m from the axis of rotation at the instant when its tangential and normal accelerations are equal.
 - **B6.** (a). Define the term angular momentum. [3]
 - (b). (i). Prove that the moment about a fixed point O of all the forces acting on a rigid body of mass M is equal to the time rate of change of angular momentum of M about O.[8]
 - (ii). A particle with a mass of 4kg has position vector given by $\vec{r} = 3t^2 i 2tj 3tk$, where \vec{r} is in metres and t is in seconds. For t = 3s, determine the magnitude of the angular momentum of the particle and the moment of all the forces acting on the particle both about the origin of coordinates.
 - (c). Prove that the path followed by a particle launched at angle α to the horizontal is parabolic.

B7 (a). State and prove the parallel axis theorem.

[13]

[10]

(b). Prove that the loss in kinetic energy of a system of bodies colliding in a perfectly inelastic collision is equal to the kinetic energy the system would have had if its bodies had moved with lost velocities.

(c). The motion of a body in polar coordinates is given by: $\theta = 0.2t + 0.02t^3$ and $r = 0.2 + 0.04t^2$ where θ is in radians and r is in meters. Calculate the magnitude of the velocity at the instant when t = 3s.

END OF PAPER