BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT: ENGINEERING AND PHYSICS

PROGRAMME BSc HONOURS DEGREE IN COMPUTER SCIENCE

COURSE CODE PH206 (3): ELECTRONICS 1

DURATION: 3 HOURS TOTAL MARKS: 100

(MON 3874

E MON 20214

INSTRUCTIONS TO CANDIDATES

Answer **question one** in Section A and **any three** questions from Section B. Section A carries 40 marks and each question in Section B carries 20 marks

SECTION A

1	(a)	Convert the following from rectangular to polar form: $C = -6 + j 3$.	[4]
	(b)	Determine the sum of $C_1 = 3 + j 6$ and $C_2 = -6 + j 3$.	[4]
	(c)	Find the product of C_1 and C_2 if $C_1 = -2 - j \cdot 3$ and $C_2 = 4 - j \cdot 6$.	[4]
	(d)	Given that $C_1 = 2 \angle -40^\circ$ and $C_2 = 7 \angle 120^\circ$, calculate the product of C_1 and C_2 .	[4]
	(e)	Transform the following sinusoid in time domain to phasor domain: $v = -4\sin(30t + 50^{\circ}) V$.	[5]
	(f)	Convert the sinusoid corresponding to the following phasor to time domain: $I = 12 + j 5$ A.	[5]
	(g)	The instantaneous current of an ac sinusoidal current is given by = $I_m cos \omega t$. Show that $I_{rms}=\frac{I_m}{\sqrt{2}}$.	[6]
	(h)	Distinguish between ideal and practical sources in electric circuit theory.	[2]
	(i)	Use resistor colour codes to determine the resistances of resistors with the following band colours:	
	(1) (2) (3)	green, brown, blue, silver. yellow, violet, silver. grey, red, gold.	[2] [2] [2]

SECTION B

2 (a) Using the Wye-Delta transformation, determine the resistance between P and Q of the network shown in Fig. 2.1. [20]

Fig. 2.1

(b) Calculate the source current.

[2]

3 (a) Determine the current through the 1 Ω resistor in the circuit in Fig. 3.1 using the Superposition Theorem. [17]

Fig. 3.1

(b) Calculate the amount of heat energy dissipated in the 1 Ω resistor in part (a) over a time interval of 1 hour. [3]

In the network of Fig. 4.1, find the Thevenin voltage (V_{TH}) , Thevenin resistance (R_{TH}) and the load current I_L flowing through and load voltage (V_L) across the load resistor $R_L = 10~\Omega$ using Thevenin's Theorem. [20]

Fig. 4.1

In the network of Fig. 5.1, find the Norton current (I_N) , Norton resistance (R_N) and the load current I_L flowing through and load voltage (V_L) across the load resistor $R_L = 1.5 \Omega$ using Norton's Theorem. [20]

Fig. 5.1

EX0012 Annex 1

6	(a)			
	(i) (ii)	series RLC circuit. Calculate the resonant frequency. Q-factor of this circuit at resonance.	[4] [4]	
	(b) (i) 0: (ii) 5 (iii) 7		[2] [2] [2]	
	(c)	The current in an inductive circuit is given by 0.3 sin (200t - 40°) A. Obtain the equation for the voltage across it if the inductance is 40 mH.	[6]	